liantis

Cross Sectional Study on Inhalation and **Dermal Exposure to Solvent Cocktails in Printing Industry**

Lucie Huyghebaert

Lucie Huyghebaert

- Industrial engineer biochemistry
- Occupational Hygienist
- Teamleader Occupational Hygiëne at Liantis

Liantis

- Organisation of 1700 employees
- All aspects of entrepreneurship

Health and safety

- Around 600 within health and safety
- Since 1966

- 1. Introduction
- 2. Method
- 3. Result
- 4. Conclusion

Course Occupational Hygiene (2017 - 2018) Thesis study

Subject?

- Chemical risks
- Measurement posibilities
- Possibility to test new analysis method for dermal exposure

Measurements in association with univeristy

http://www.lamh.be/en

LABORATORY FOR OCCUPATIONAL AND ENVIRONMENTAL HYGIENE

- Questions concerning the health impact of the printing proces to the employee of a client printer
- No Chemical Inventory
- No risk analysis
- No previous measurements

Description print company

- 145 employers
- Industrial print processes
- All types of paper and printwork

Parking

Offices

(sales and admin)

samen werkt.

Rotatie vellen

Determination of subject:

- Typical products in printing: Solvents
- Air evaluations possible
- Dermal evaluations possible
- Known to affect skin (dry skin, skin permeation?)

Goal:

- Global evaluation (air and dermal)
- Air measurements according to standard NBN EN 689:2019

Estimations of usage of chemical products

- Focus on 2 big printing sites (roll's and sheet's)
- Proces type: Offset printing
- Most used solvent : Isopropanol
- Expectation :Isopropanol in relativly high concentrations in air

1. Screening

- Geneal solvent screening
- Sheets and roll's (different exposures expected)
- Different measurements per exposure

- •5 measurements
- October 2017

Parking

Kantoor (sales and administration)

samen werkt.

Screenings measurement

Confirmation of isopropanol in the air

Component	Cas nummer	s nummer TLV (ug/m²) VSOP (rotatie)		afie)	Concepta (rotatle)		Grapha 6 (ro		enveloppes		SM 74	
			L3206_15		L3209_18		L3208_17		L3207_16		L3205_14	
			concentratie	relatieve	concentratie	relatieve	concentratie	relatieve	concentratie	relatieve	concentratie	relatieve
			(µg/m²)	conc (%)	(µg/m²)	conc (%)	(µg/m²)	conc (%)	(µg/m³)	conc (%)	(µg/m²)	conc (%)
Iso-propanol	67-63-0	500.000	31.836	6,37%	22.725	4,55%	15.040	3,01%	69.709	13,94%	103.880	20,78%
N-undecaan	1120-21-4		344		517		198		1.403		1.113	
Butaxyethanol	111-76-2	98.000	282	0,29%				0,00%	588	0,60%	633	0,65%
n-heptaan	142-82-5	1.664.000	113	0,01%	67	0,00%		0,00%	1.354	0,08%	566	0,03%
n-dodecaan	112-40-3		210		260		113		611		541	
metylcyclohexaan	108-87-2	1.633.000	84	0,01%	51	0,00%			1.037	0,06%	517	0,03%
Aceton	67-64-1	1.210.000									487	0,04%
1-methoxy-2-propanol	107-98-2	375.000	700	0,19%							372	0,10%
3-methy/hexaan	589-34-4		.57		37				693		314	
n-butylacetaat	123-86-4	723.000									295	0,04%
n-decoan	124-18-5				232		92		377		288	
2-methylhexaan	591-76-4								420		193	
Ethanol	64-17-5	1.907.000									113	0,01%
2,3 di-methylpentaan	565-59-3								167		79	
n-tridecaan	629-05-5		.58		72				53		44	
n-pentaan	109-66-0	1.800.000	38	0,00%	35	0,00%					34	
n-nongan	111-84-2	1.065.000	61	0,01%								
Cyclohexaan	110-82-7	350.000							86	0,02%		
Cummulatieve blootstelling			7%		5%		3%		15%		22%	

2. Measurement campagne

Kantoor (sales and administration)

samen werkt.

Rotatie

vellen

2. Measurement campagne

- active air sampling
- passive air sampling
- Dermal measurement
 - Thumb
 - Middle finger
 - Fore arm
 - nek

samen werkt.

Analysis on Patches

patch with activated charcoal layer

(diffusion + absorbtion)

analysis with dillution of CS2 and GC-MS (cnfr air samplings)

3 day's

- Monday 12/03/2018
- Monday 09/04/2018
- Friday 13/04/2018

divided over different workers and jobtypes

- 3 machines in sheets
- 3 machines in rolls
- The office in production
- The office in de storage
- The adminisatrative office

Air exposure

Air exposure

- Office admin significantly lower
- Office in production / warehouse simular exposure as roll's
- Relative low exposure at roll's (due to type of proces : UV hardning => low emission + ventilation with filters)
- Highest concentration at sheets

Dermal exposure Isopropanol

Correlation Dermal concentration vs air concentration

Relative good correlations dermal vs air concentrations

No systematic differences between diffrent dermal concentrations

- Direct contact : Thumb, middlefinger
- Splashes : fore arm
- Reference due to passive absorption: neck

Results manually transferred to data sheet

Some results seemed at least remarkable

Isopropanol in air allways in high excess present (factor 100 higher) – other componant in same range dermal exposure

=> relative contribution changed

Question

Are traditional evaluation methods sufficient for dermal exposure?
 High volumes in dermal exposure but not present in air?

Visualisation: correlation air versus dermal exposure.

Purpose determination of the slopes

Slope = indication

Way to make the graph

Ln concentrations => exposures are mostely logaritmical functions Dermal exposure in 2groups : direct en indirect contact

- Direct contact : thumb + middlefinger
- Indirect contact / reference : fore arm + nek

Isopropanol

- Slope of direct contact (thumb + middlefinger) and indirect contact (forearm + nek) simular – same inclination
 - The contribution of isopropanol to dermal exposure is simular for direct and indirect contact, thus due to general diffusions
 - Skin permeation factor: 0,00089 cm/h

N-heptane + methylcyclohexane

- Slope of direct contact (thumb + middlefinger) and indirect contact (forearm + nek) clearly different – very different inclinations
 - The contribution to dermal exposure is diffrent for direct and indirect contact, thus direct contacts to products give an increase in dermal exposure
 - Skin permeation factor: 0,95 cm/h

How much is to high? No OELV for dermal exposures

- Calculations possible based on echa DNELS?
 - Not found on ECHA for isopropanol and n-heptane
 - Alternative source: 'chemiekaarten'

Recalculation based on formula for DNEL reference? Isopropanol DNEL 888 mg/kg/day – n-heptane: DNEL 300 mg/kg/day

Conclusions

Air concentrations

- Highest concentration in department sheets
 - Re-evaluation necessairy within 2,5 years (NBN EN 689:2018)
 - Less product but no air ventillation
 - Thermical drying of the inks

- Other locations (department rolls and offices)
 - Exposure under controll
 - No further evaluation necessairy as long as situation remains the same

Conclusion

Dermal concentrations

- No dermal uptake of isopropanol, but possibly due to other solvents, usage of gloves with a chequed frequence of renewal necessairy
- Slope Ln(air) vs Ln(hand) and Ln(air) vs Ln(ref) possible indication of products which have a dermal uptake
- Classical methods of evaluation seem irrelevant. Also products in smaler volumes of usages could have a relative significant dermal exposure

Conclusion

Lack of data for evaluation of dermal exposures

- No exposure limits
- No dose effect discriptions
- No safe values (or calculated from air values)
- Very few posibilities for measurements
- Few information known

- ⇒Very theoretical approach of dermal exposure
- ⇒No information of the industry

Conclusion

Human exposure routes

- Inhalation
 - Measurements, OELV's, DNEL, exposure modeling,
- Dermal
 - ?
- Ingestion
 - Good hygiene + no consumption

Vragen of opmerkingen?

