Uncertainty and variability in the exposure reconstruction of chemical incidents

The case of acrylonitrile

Daan Huizer

Ad Ragas, Mark Huijbregts, Rik Oldenkamp – Radboud University

Joost van Rooij – Caesar Consult

NVvA symposium 2015 2015-03-19

Chemical incidents

DMMP & Isopropanol El Al Boeing, Amsterdam Oct 4, 1992

250 M Huidige volledig ontruimde perimeter

500 M Oorspronkelijke volledig ontruimde perimeter

1000 M Oorspronkelijke veiligheidszone (bewoners werden gevraagd binnen te blijven)

Exposure assessment possibilities

Questions & Aim

- What is the exposure during a chemical incident?
 - Air measurement data are scarce (or lacking)
 - Often only blood samples available (days or weeks after incident)
 - Exposure duration?
 - Exposure dynamics?
 - Different exposed groups (rescue workers, residents)

Aim:

Characterization of uncertainty and variability in the exposure reconstruction of chemical incidents

Case study acrylonitrile

- Chemical incident (Bader et al. 2006)
 - Decontamination of tank wagons containing acrylonitrile
 - Cleaning workers (n=4, 1 entering tank wagon)

Case study acrylonitrile (2)

- Sample collection (Bader et al. 2006)
 - Blood samples after 25 days and 85 days
 - N-2-cyanoethylvaline (CEV) in hemoglobin

3. Binding to blood sulfhydryls

Method

Reversed dosimetry

Principle of Exposure Conversion Factor (ECF) (Liao et al. 2007)

Method

Sources of variability and uncertainty

(interindividual) Variability

Human physiology

Uncertainty

- Exposure duration
- Phys-Chem properties

Method

Nested Monte Carlo Simulation

- 2 scenarios with fixed air concentrations:
 - 3 ppm ACN in air for 5 minutes
 - 3 ppm ACN in air for 60 minutes
- Calculation of ECF-distribution per scenario (based on 10.000 model simulations)
- Calculation of air concentration during incident based on individual blood samples (CEV) and ECF distribution for each worker

Results

ECF probability plot

Results

Reconstructed air concentrations

Recalculated air concentrations ACN at the time of the incident.

Exposure scenario			85 days after the incident		
No.	Exposure duration	Worker	Measured concentration CEV (pmol/g Hb)	Reconstructed air concentration ACN at the time of the incident (ppm)	
1.	5 min	1	995	37.9 (18.2–112.9)	
		2	88	3.3 (1.6–10.0)	
		3	406	15.5 (7.4–46.1)	
		4	283	10.8 (5.2–32.1)	
2.	60 min	1	995	2.7 (1.5-5.6)	
		2	88	0.2 (0.1-0.5)	
		3	406	1.1 (0.6–2.3)	
		4	283	0.8 (0.4–1.6)	

- Median reconstructed air concentrations ranged from 0.5 38 ppm (depending on scenario)
- Acute limit values of 25 ppm (NL, RIVM) and 57 ppm (US, EPA)
- -> for 1 worker the predicted p-90 value > EPA limit value (5-min scen. 85 days)

Results

Parameter importance

Conclusions and implications

Conclusions

- Method seems suitable for exposure reconstruction
- Predicted ranges within a factor 3 with this method
- Uncertainty in exposure duration most significant source

Recommendations

- Strict documentation of 'exposure scenario' after incident
- Collect urine/blood samples a.s.a.p. to decrease uncertainty
- Collect human physiological data from victims to decrease variation in modeled results (up to 20% in this case)

Thank you for your attention

Questions?
Suggestions?
Remarks?

Toxicology Letters 231 (2014) 337-343

Contents lists available at ScienceDirect

Toxicology Letters

Uncertainty and variability in the exposure reconstruction of chemical incidents – the case of acrylonitrile

Daan Huizer ^{a,b,*}, Ad M.J. Ragas ^{a,c}, Rik Oldenkamp ^a, Joost G.M. van Rooij ^b, Mark A.J. Huijbregts ^a

- ^a Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen. The Netherlands
- ^b Caesar Consult Nijmegen, PO Box 31070, 6503 CB Nijmegen, The Netherlands
- ^c School of Science, Open Universiteit, PO Box 2960, 6401 DL Heerlen, The Netherlands

HIGHLIGHTS

• Exposure to acrylonitrile during a chemical incident was reconstructed.

Daan.huizer@caesar-consult.nl

