Exposure to EMF: measurement methods

Yvette Christopher-de Vries

Presentation overview

- What are EMF?
- Sources of EMF
- Exposure assessment of EMF
- Measurement devices for quantitative exposure assessment

ionising radiation e.g. X-rays

Physical agents

pressure

humidity

Non-ionising radiation

vibration

Characterising EMF

EMF waves are characterised by:

- wavelength
- frequency or
- Amplitude (power)

Characterising EMF

Relationship between wavelength & frequency:

$$\lambda \propto 1/\nu$$

$$\lambda = c/\nu$$

Wavelength = <u>speed of light</u> frequency

 λ = wavelength (m)

v = frequency (Hz)

 $c = speed of light (3 x 10^8 m/s)$

What are EMF?

• Electromagnetic waves are a form of energy. The quantity of energy contained in a wave depends on the frequency and the wavelength: the shorter the wavelength, the higher the frequency and energy of the electromagnetic wave.

Electromagnetic spectrum

Man-made sources of EMF

Purpose of the exposure assessment

- Hazard surveillance
- Control technology assessment
- Control intervention
- Compliance with exposure guidelines
- Health hazard evaluation
- Epidemiology
- Risk assessment

Purpose of the exposure assessment

Exposure assessment assessment method

Exposure methods

Staged approach for compliance monitoring

Stage I tools

USE

PRODUCTION

Stage I tools

Institute for Risk Assessment Sciences

Stage I tools – identification of EMF sources

Work env.	Category I	Category II	Category III
1. Installation & maintenance	electrical hand-held tools (ex. welding equipment)	Equipment being installed/maintained	Troubleshooting work
3. Dielectric heating	-	Plastic sealers Wood gluing equip.	-
4. Electricity production & distribution	Bus bars/conductor rails in substations	Power stations Air-cooled coils in capacitor banks	-
5. Electrochemical	•		rectifiers
6. Induction heating	Automated systems	With open coilsLarger furnaces	Smaller smelting furnaces (alloying)
7. Welding	Automated systems	Arc welding (cable; electrode holder)	Spot and induction welding, (manual or semi-automated)
13. Other work environments	Induction hobs in hotel & catering industry (food preparation)	•Tape erasers •RF & microwave lighting •Non-destructive testing	

Adapted from: Bolte en Pruppers (2006). Elektromagnetishce velden in arbeidssituaties

Stage II/III tools

Measurement ranges:

Static: 0 - 3 T;

3 - 7T

Gradient field:

0 - 15 T/s

ELF-EMF meters

EMF meters	Range (μT)	Resolution (μT)	Frequency (Hz)	sample Rate
				(secs)
LI L	standard: 0.01 – 70	0.01	40 – 1000	4.0
	High field 0.5 -7000	0.5	40 - 1000	4.0
met.	Standard 0.01 – 300 High field	0.01	40 – 800 (Broadband) 100 – 800 (Harmonic)	1.5
O STATE OF THE PARTY OF THE PAR	0.4 -12000	0.4	40 – 800 (Broadband) 100 – 800 (Harmonic)	1.5

Walkthrough survey

- Spot or short-term area measurements
- Hand-held EMF meter
- Measurement at known distances from sources e.g. 0.5 m;1.0 m

Exposure measurements at Stage III

- Sampling strategy
 - Personal monitoring
 - Task-based
 - Shift-based
- Measurement equipment
- Meter location: waist, chest
- Work environments (identified in stage II)
- Job/tasks (identified in stage II)
- Repeat sampling

Personal monitoring

- Exposure data
- Diary data
 - Activities
 - Duration
 - Frequency
 - Location

Exposure monitoring of EMF

Institute for Risk Assessment Sciences

Statistical analysis: ...exposure metrics for EMF

- Traditional metrics
 - TWA-AM
 - TWA-GM
 - 95th percentile
 - Max value
 - Geometric standard deviation
- Alternative
 - Peak analysis
 - % measure > threshold
 - Maximum value
 - Rate of change metric

...and finally

- In order to choose the appropriate methods to conduct an exposure assessment for EMF one needs
 - to have an understanding of the basic physics for field characterization
 - detailed knowledge of the workplace scenarios (equipment and activity as defined in RIVMs guidance)
 - Knowledge of the available measurement devices including their weaknesses and strengths
 - This will decide on what is the most appropriate approach for the purpose of the exposure assessment