Biomonitoring of Polycyclic Aromatic Hydrocarbons in 2008

Frans Jongeneelen IndusTox Consult

BENZO[A]FLUORANTHENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

BENZO[A]ANTHRACENE

DIBENZO[A,A]ANTHRACENE

NVVA- symposium 2008

Biomonitoring PAH in 2008

Contents

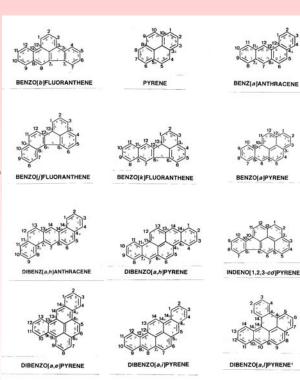
- 1. Introduction
- 2. Biological indicators of exposure to PAH
- 3. Biological exposure limit of urinary 1hydroxypyrene
- 4. Biomonitoring PAH as a tool for hygienists
 - 1. Efficacy of control measures
 - 2. Dermal exposure
 - 3. Multi-route exposure
- 5. Studies with new data/ approaches/ developments
- 6. Our present research work
- 7. View on developments in future

Biomonitoring PAH in 2008 Introduction

How to do it?

Introduction

Why biomonitoring?


BM gives estimate of true uptake:

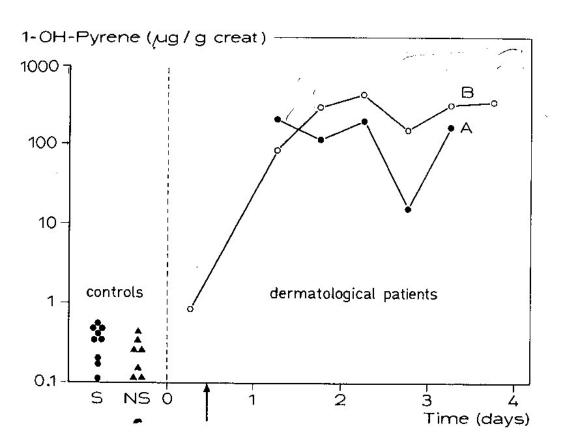
- Individual differences in breathing minute volume
- Individual differences in resorption
- Dermal exposure assessment
- Oral ingestion (by hand-mouth shunt, biting ones nails)

Biomonitoring PAH Occupational PAH-exposure

- PAH are present as complex combustion mixtures
- In gasphase and particulate matter
- Significant dermal exposure
- Composition varies depending from source
- Carcinogens are the 4-6 ring components

Biomonitoring PAH Biological indicators of PAHexposure

Suggestions from 1985:


- Metabolites in human urine
 - Pyrene -> 1-hydroxypyrene
 - 2. Phenantrene -> nydroxyphenanthrene
 - 3. Naphtalene -> 1-naphtol
 - 4. Chrysene -> hydroxychrysene
 - 5. BaP -> 3-hydroxybenzo(a)pyrene
- PAH-DNA-adducts in blood cells
 - ♦ BaP -> BaP-adducts
 - ◆ Total PAH -> Aromatic adducts

Biomonitoring PAH Early data on urinary 1-hydroxypyrene

Int Arch Occup Environ Health (1985) 57:47-55

Fig. 4. 1-OH-pyrene in urine samples of 16 non-exposed controls and 2 patients (A and B) undergoing topical treatment with a coal tar ointment. NS = non-smokers, S = smokers

www

Present status of 1-hydroxypyrene as biological indicator of PAH

Early '90:

Grab sample of papers on biomonitoring of 1-hydroxypyrene

2008:

Search in Pubmed: approx. 600 papers!

AUTHORS	YEAR	OCCUPATIONAL / ENVIRONMENTAL*	
Clonfero et al.	1990	Anode plant	
Jongeneelen et al.	1990	Coke-ovens	
Tolos et al.	1990	Aluminium reduction plant	
Zhao et al.	1990	Coal-burning*	
Buchet et al.	1992	Graphite-electrode & Coke-oven plants	
Buckley et al.	1992	Diet*	
Burgaz et al.	1992	Road pavers	
Gardiner et al.	1992	Carbon black manufacturing	
Jongeneelen et al.	1992	Coke-ovens	
Cenni et al.	1993	Pyrite mine Railway tunnel under construction Earthenware factories	
Granella and Clonfero	1993	Automotive repair	
Grimmer et al.	1993	Coke-oven	
Kanoh et al.	1993	Diesel gas*	
van Rooij et al.	1993a	Coke-oven	
van Rooij et al.	1993b	Wood preservation plant	
Boogaard et al.	1994	Petrochemical plant	
Ferreira Jr. et al.	1994a	Graphite-electrode production Coke-oven	
Ferreira Jr. et al.	1994b	Steel foundry	
		Graphite-electrode production	
Hansen et al.	1994	Iron foundry	
Jongeneelen et al.	1994	PAHs*	
Omland et al.	1994	Iron foundry	
Quinlan et al.	1995	Coal liquefaction	

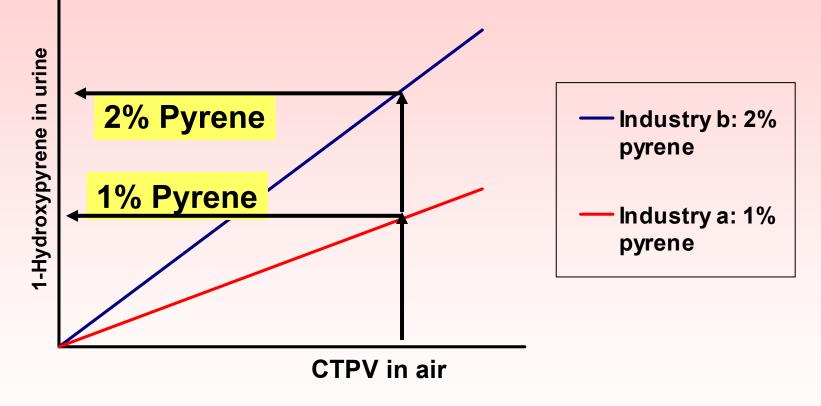
IndusTox Consult

Alternative PAH-metabolites as indicators of exposure

- Hydroxyphenantrenes in urine
 - ◆ 3-ring PAH, mainly gas-phase
 - ♦ First experienced in 1995
 - ♦ 20 papers
 - Mainly in Germany
- 1- and 2-hydroxynaphtalene in urine
 - 2-ring PAH, stricktly gas-phase PAH
- 6-hydroxychrysene in urine
 - ♦ New in 2006
 - ♦ 3 papers
- 3-hydroxybenz(a)pyrene in urine
 - ♦ New in 2007
 - ♦ 2 papers

Biomonitoring PAH

Conclusions on urinary metabolite monitoring


- * 1-Hydroxypyrene is prefered indicator
 - Many reference data for benchmarking
 - Analytical method has proven to be solid
 - 4-ring PAH = representative of carcinogenic PAH
- Series of PAH-metabolites is sometimes useful
 - 3-OH-BaP at cokeoven
 - OH-naphtalene light products

Health-based exposure limit

- Dose response data on urinary 1-OH-Pyrene and cancer not available
- Concentration in urine at the airborne exposure limit of PAH = 2.3 25.0 umol/mol (5 papers)
- * LoOEL of early genotoxic effects = 1.0 1.9 umol/mol (4 papers)
- ❖ Be aware: there is a background in urine
 - Smokers: 95-percentile = 0.7 umol/mol
 - Non-smokers: 95-percentile = 0.3 umol/mol
- Interference: Pyrene content is not fixed

Pyrene content in PAHmixtures is not constant

Level of urinary 1-hydroxypyrene is dependant of the content of pyrene in CTPV

Conclusion on health-based limit

- Not yet possible
 - Dose-response data are poor
 - PAH-profile is different in various industries/sources

- Alternative approach:
 - Control based limits. Already recommended by HSE and ACGIH

HSE (UK): Control-based exposure limit

1998 Survey results

pp. 395–403, 2006 with the permission Stationery Office 93/annhyg/mel010

This study showed that 90% of workers in 'good practice'

A industries have levels below 4.0 pmol/mol (excl. creosote exposed an workers)

BMGV 4 \(\text{pmol/mol (8 \text{pg/g})} \)

Biological Monitoring Guidance Value - HSE (UK)

HSE concluded in 2004:

- Suitable monitoring method
- Sufficient data
- Guidance Value can be set for 'good occupational practice'

BMGV for PAH was set as 4.0 µmol/mol hydroxypyrene in urine

ACGIH (USA): Biological Exposure Index

ACGIH concluded in 2005:

- Health-based BEI scientifically not justified
- Control exposure toward reference value
 - Reference level as 99-percentile of controls = 1.0 μg/L = approx. 0.49 μmol/mol
 - Warrants occupational exposure
- ❖ Adjust to the actual ratio pyrene/B(a)p
 - ◆ Default ratio pyrene/B(a)p = 2.5
 - Formula: { 1-OHP_{adj} =1-OHP * actual ratio/default ratio}

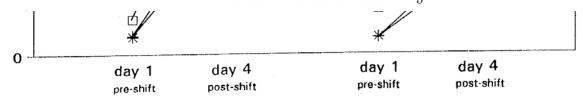
Biomonitoring of PAH as a tool for hygienists

Examples:

- 1. Test of efficacy of control measures
 - a) Reduction of exposure by improved dermal protection
 - b) Reduction of exposure by using an air stream helmet
- Detection of PAH uptake of PAH among wetsuit wearing windsurfers

Biomonitoring PAH as a tool for hygienists Reduction of dermal exposure: example 1a

Figure 1. The effect of extra hygienic measures on the urinary 1-hydroxypyrene excretion of cokeoven workers at the top side (\(\sigma\)---\(\sigma\), coke side



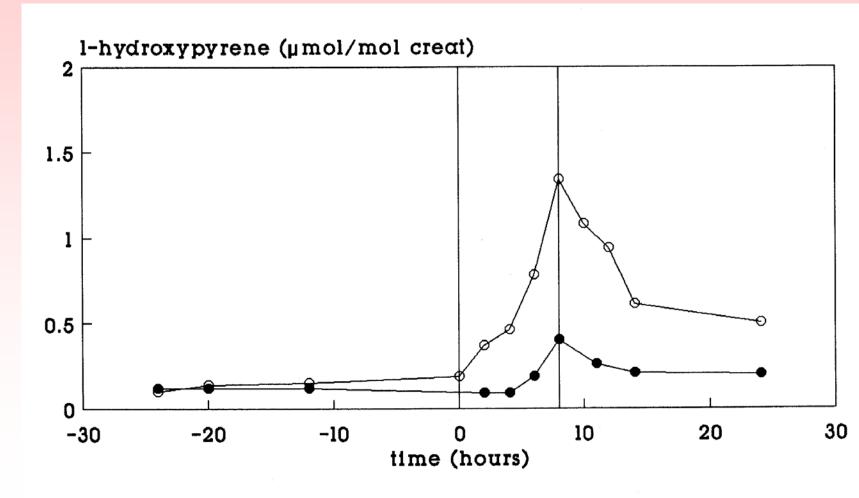
Ann. occup. Hyg., Vol. 38, No. 3, pp. 247-256, 1994
Elsevier Science Ltd
Copyright © 1994 British Occupational Hygiene Society
Printed in Great Britain. All rights reserved
0003-4878/94 \$7.00+0.00

0003-4878(94)E0025-U

REDUCTION OF URINARY 1-HYDROXYPYRENE EXCRETION IN COKE-OVEN WORKERS EXPOSED TO POLYCYCLIC AROMATIC HYDROCARBONS DUE TO IMPROVED HYGIENIC SKIN PROTECTIVE MEASURES

JOOST G. M. VANROOIJ,*† MONIKA M. BODELIER-BADE,* PIET M. J. HOPMANS; and FRANS J. JONGENEELEN§

Biomonitoring PAH as a tool for hygienists


Protection factor of air-streamhelmet on cokeoven: example 1b

- Question: What is protection of an airstream helmet at cokeoven?
- Cokesoven: diffuse emission of PAH
- Volunteer. 2 times a 8h-shift on deck
 - ◆ 1. With air stream helm
 - ♦ 2. Without air stream helm
- 2 series of ca. 10 urine samples over 48 hour
- Bioindicator of PAH: 1-hydroxypyrene in urine

Biomonitoring PAH as a tool for hygienists Assigned protection factor of air-streamhelmet on cokeoven: example 1b

- air stream helmet

air stream helmet

BM of PAH as a tool for hygienists

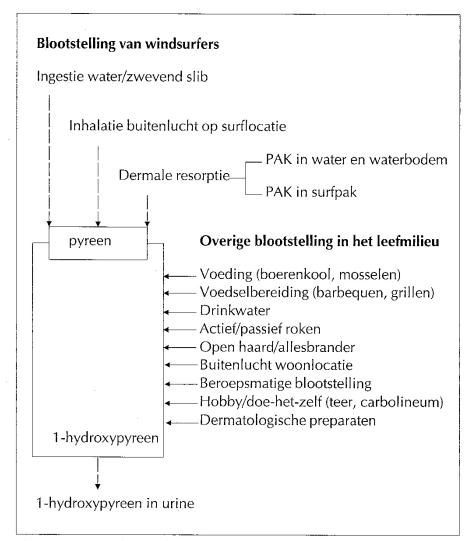
PAH exposure among windsurfers:

example 2

In the Netherlands
Rhine delta lakes
may have a sludge
layer of 0,5 m,
contaminated with
PCB's, PAH
and heavy metals

Are windsurfers exposured to PAH?

Lake: Ketelmeer

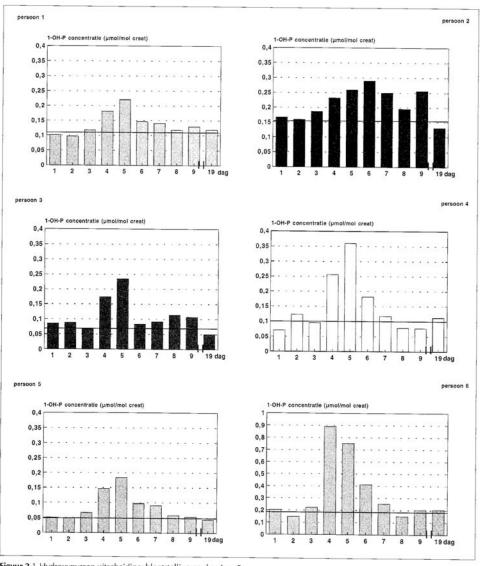


BM of PAH as a tool for hygienists

Routes of exposure of windsurfers wearing a wetsuit

Exposure to PAH:

- Swallowing water
- Dermal uptake
- Inhalation



Figuur 1 Overzicht van blootstellingswegen voor PAK bij windsurfers

Biomonitoring PAH as a tool for hygienists Results: 1-OH-Pyrene in urine of windsurfers

- Increased level on the active surfing days 4 and 5
- Reason:
 - By skin uptake?
 - By swallowing water?

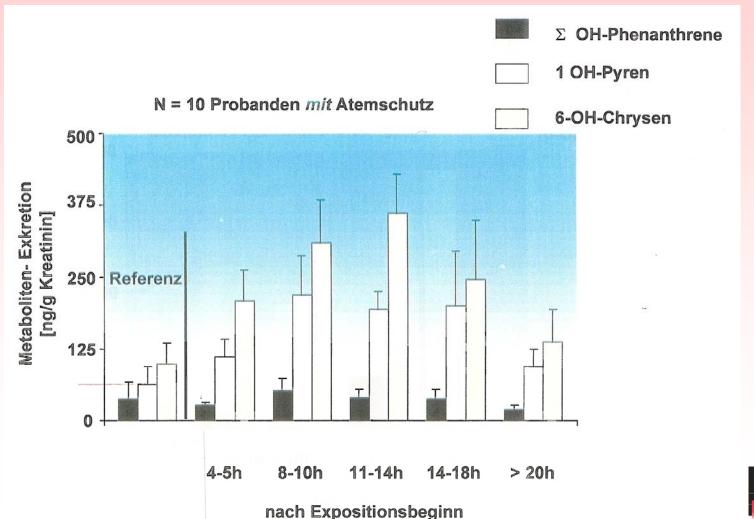
Figuur 2 1-Hydroxypyreen uitscheiding; blootstelling op dag 4 en 5

Some PAH-biomonitoring studies with new data/approach or information

Nice new PAH biomonitoring study 1 Urinary 1-hydroxypyrene in newborn

"Trans-placental" exposure in 42 mothersbabies couples (Sartorelli et al; 1984)

	Smoking (N=31)	Non-smoking (N=11)
Mothers (N=42)	0,23 (0,11)	0,15 (0,10)
Babies (N=42)	0,20 (0,15)	0,15 (0,17)



Nice new PAH biomonitoring study 2 Dermal uptake of PAH in bitumen fume

- Study of Knecht, 2001
- Experimental design
 - 10 male, non-smoking volunteers with respirators were during 4 hrs exposed to 20 mg/m³ bitumen fume
 - Urine analysed for three PAHmetabolites

Nice new PAH biomonitoring study 2 Dermal uptake of PAH in bitumen fume: results

Nice new PAH biomonitoring study 3 Association between urinary 1hydroxypyrene and genotoxic effects

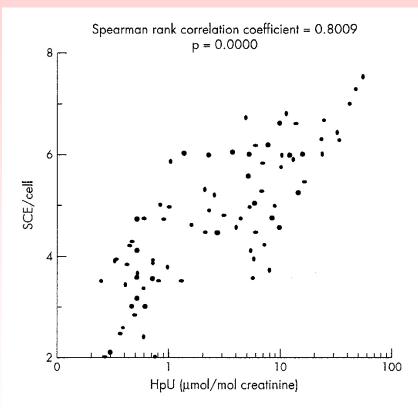
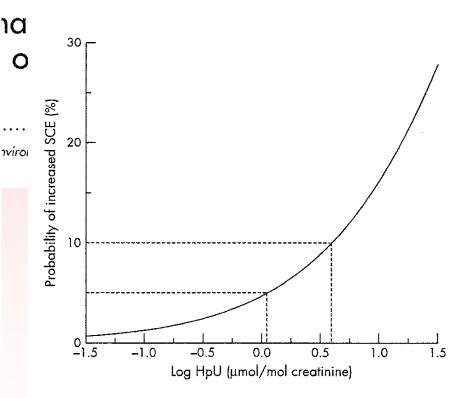



Figure 1 Relation between SCE in lymphocytes and HpU concentration in post-shift urine of exposed and control population (n = 85).

Figure 2 Probability of increased SCE as a function of HpU concentration in post-shift urine.

Nice new PAH biomonitoring study a Toxicokinetic modeling for refined estimation of uptake by route. Example

Research. Inhalation uptake

2. Dermal uptake
PBTK Modeling Demonstrates Contribution of Derma
Components to Earnsport in abouty centrations

David Kim,¹ Melvin F Andersen,² Yi-Chun E. Chao,¹ Peter P. Egeghy,^{1*} Steph Leena A. Ny Ander-Fatorage in body

¹Department of Environmental Sciences and Engineering, School of Public Health, The Univ Chapel Hill, No. Caroling, \$6,000 Public

→ Kinetic model demonstrates uptake by different routes (PBTK-model)

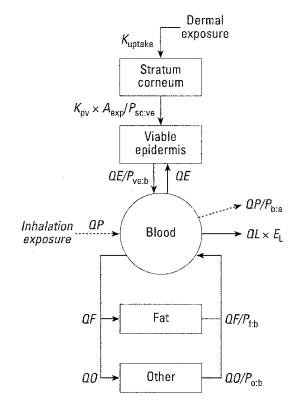
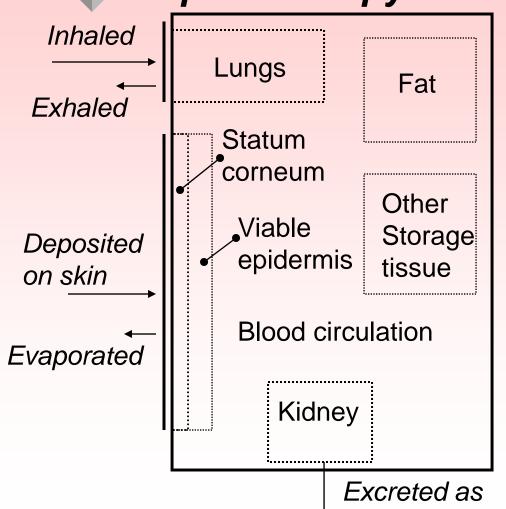



Figure 1. Schematic of the physiologically based toxicokinetic (PBTK) models for the study of naphthalene toxicokinetics. Pulmonary uptake of naphthalene in the personal breathing-zone and pulmonary clearance from the blood compartment are added to a previously published dermatotoxicokinetic model (Kim et al. 2006b). Abbreviations in the PBTK model: $K_{\rm uptake}$, input rate constant for dermal exposure; $K_{\rm py}$, permeability coefficient for the viable epidermis; A_{exp} , exposed surface area; P_{sc:ve}, stratum corneum:viable epidermis partition coefficient; QE, blood flow rate to skin; Pverh, viable epidermis:blood partition coefficient; QP, pulmonary ventilation rate; $P_{b:a}$, blood:air partition coefficient; QF, blood flow rate to fat; P_{f-b} , fat:blood partition coefficient; QO, blood flow rate to other tissue; $P_{o:b}$, other tissue:blood partition coefficient; $E_{\rm I}$, extraction ratio.

Our present research work

Example: CBTK-model for predicting the urine concentration as a result of inhalation and/or dermal exposure of pyrene (CEFIC-LRI funded study)

Urinary excretion of pyrene as metabolite = f(Net inhalation, Net dermal uptake, elimination)

Excreted as hydroxypyrene in urine

Our present research work Outline CEFIC-LRI funded study

Input Tool Output

DNEL or equivalent Toxicity limit value of compound

Computer Program

Databases with:

- 1. CBPK & PBPK models
- 2. Chemical & physical data
- 3. Toxicokinetic data

Biomonitoring
Equivalent
Guidance
Value (BEGV)
in biological
specimen

Compound

Route(s) of exposure

Biological specimen of choice

What will the near future bring?

- Hydroxy-PAH series in urine. Series of 16 priority PAH of EPA as hydroxy-PAH?
- * Total PAH-dose as expressed as b(a)p-equivalents (BEQ) ?
 - viz. TCDD-equivalents (TEQ) for dioxines
- Modeling for refined exposure assessment. PBTK modeling with probablistic distributions of parameters?
- Introduction of markers for target dose or biological effective dose?
- Introduction of individual assessement of risk on PAHinduced cancer using genomics (= sequence information on the human genome)? Not in the near future!

Only God knows what will be brought. However, in the lobby we can try to change that.

Biomonitoring PAH More info?

E-mail: frans.jongeneelen@industox.nl

Voice: +31.24.3528842

Internet: www.industox.nl

Thank you

