

Impact of Environment on the Epigenome

Lode Godderis (Md, Phd)^{1,2}

¹ KULeuven, Center for Environment and Health, Belgium; ² Idewe, Heverlee, Belgium

Outline

- Introduction
- Objective
- Impact environment on health through epigenetics
- Impact environment on development through epigenetics
- Conclusion

Outline

- Introduction
- Objective
- Impact environment on health through epigenetics
- Impact environment on development through epigenetics
- Conclusion

Introduction

Introduction

Introduction

"Heritable changes that regulate gene expression that occur without change in nucleotide sequence"

Outline

- Introduction
- Objective
- Impact environment on health through epigenetics
- Impact environment on development through epigenetics
- Conclusion

Objective

Impact environment on health through epigenetics

Impact environment on development through epigenetics

Outline

- Introduction
- Objective
- Impact environment on health through epigenetics
- Impact environment on development through epigenetics
- Conclusion

Impact environment on health through epigenetics

Genetic mechanisms

Genetic mechanisms

- Mutagens
- Intercalating agents and cross-linkers
- Clastogens
- Aneugens

Genetic mechanisms

- Proto-oncogene →
 Oncogene
 - Gain of function
 - o RAS, MYC
- Tumor suppressor gene
 - Loss of function
 - P53, APC

Agents	IARC	Category	Concentra	Concentration (µM)				
			High	Medium	Low			
Formaldehyde ^{*,1,2}	1	Aldehyde	100	10	1			
Styrene ^{,1}	2B	Aromatic hydrocarbon	5000	500	50			
Styrene 7,8-oxide ^{*,1}	2A	Aromatic hydrocarbon	500	50	5			
Benzene**.1	1	Aromatic hydrocarbon	100	10	1			
Hydroquinone*.1	3	Aromatic hydrocarbon	0.5	0.05	0.005			
Mitomycin C*,2	28	Cytostaticum	0.5	0.05	0.005			
Ethylenedibromide**,1,2	2A	Organobromide	1000	100	10			
Epichlorohydrin ^{*,1}	2A	Organochloride	500	50	5			
Acrylamide ^{**,1}	2A	Amide	500	50	5			
Trichloroethylene**,1	2A	Chlorinated hydrocarbon	5000	500	50			
Carbontetrachloride**.1	2B	Chlorinated hydrocarbon	1000	100	10			
Cyclophosphamide**,1	1	Cytostaticum	50	5	0.5			
Benzo[a]fluoranthene ^{→,1}	2B	Poly aromatic hydrocarbon	500	50	5			
Benzo[a]pyrene ^{**,1}	1	Poly aromatic hydrocarbon	500	50	5			
Benz(a)anthracene"',1	28	Poly aromatic hydrocarbon	500	50	5			

*Direct acting agent; **Indirect acting agent,

1: DNA adduct forming agent; 2: DNA Cross linking agent.

doi:10.1371/journal.pone.0039205.t001

GO ID	GO Processes	Carcinogens*									
		AA	BA	BP	CCL	CP	FA	HQ	ммс	ST	TCE
GO:0009440	Cyanate catabolic process	~	1	×	×	×	x	×	·	1	×
GO:0019885	Antigen processing and presentation of endogenous peptide antigen via MHC class I	1	×	×	/	×	~	1	×	1	~
GO:0000085	G2 phase of mitotic cell cycle	×	1	×	1	1	1	1	✓	×	1
GO:0006977	DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest	×	✓	×	1	~	×	×	x	×	·
GO:0050823	Peptide antigen stabilization	×	x	/	~	×	1	/	×	/	/
GO:0001833	Inner cell mass cell proliferation	×	×	x	×	1	1	/	×	1	×

^{*} Carcinogens [AA:Acrylamide; BA:Benz[a]anthracene; BP:Benzo[a]pyrene; CCL:Carbontetrachloride; CP:Cyclophosphamide; FA:Formaldehyde; HQ:Hydroquinone; MMC:Mitomycin C; ST;Styrene; TCE:Trichloroethylene]

GO ID	GO Processes	Carcinogens*									
		AA	BA	BZ	EDB	EPI	НQ	so	ST	TCE	
GO:0030503	Regulation of cell redox homeostasis	~	~	×	~	×	×	×	~	×	
GO:0042789	mRNA transcription from RNA polymerase I	/	×	1	V	/	/	×	x	×	
GO:0007050	Cell cycle arrest	1	×	1	×	1	1	×	1	×	
GO:0032792	Inhibition of CREB transcription	~	×	×	1	×	~	×	V	×	
GO:0043065	Positive regulation of apoptosis	~	x	1	×	~	×	x	V	×	
GO:0001975	Response to amphetamine	1	x	1	×	x	1	x	1	×	
GO:0001711	Endodermal cell fate commitment	×	1	×	×	1	1	×	×	V	
GO:0006450	Regulation of translational fidelity	×	1	x	×	/	1	×	×	1	
GO:0015855	Pyrimidine transport	×	~	×	×	~	×	~	×	1	
GO:0030858	Positive regulation of epithelial cell differentiation	×	/	×	×	1	1	×	×	1	

^{*} Carcinogens [AA:Acrylamide; BA:Benz[a]anthracene; BZ:Benzene; EDB:Ethylenedibromide; EPI:Epichlorohydrin; HQ:Hydroquinone; SO:Styrene 7,8-oxide; ST:Styrene; TCE:Trichloroethylene]

- DNA methylation
- Histone modification
- Non-coding RNA

- DNA methylation
- Histone modification
- Non-coding RNA

Epigenetic mechanisms: gene-specific DNA methylation

Epigenetic mechanisms: gene-specific DNA methylation

- DNA methylation
- Histone modification
- Non-coding RNA

Epigenetic mechanisms: histone modification

Epigenetic mechanisms: histone modification

- DNA methylation
- Histone modification
- Non-coding RNA

Epigenetic mechanisms: non coding RNA

Epigenetic mechanisms and cancer

Outline

- Introduction
- Objective
- Impact environment on health through epigenetics
- Impact environment on development through epigenetics
- Conclusion

Impact environment on development through epigenetics

Impact environment on development through epigenetics

Epigenetics, a natural mechanism

Outline

- Introduction
- Objective
- Impact environment on health through epigenetics
- Impact environment on development through epigenetics
- Conclusion

Conclusion

Conclusion

Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma

Aims: DNA methylation is increasingly proposed as a mechanism for underlying asthma-related inflammation. However, epigenetic studies are constrained by uncertainties on whether samples that can be easily collected in human individuals can provide informative results. Methods: Two nasal cell DNA samples were collected on different days by nasal brushings from 35 asthmatic children aged between 8 and 11 years old. We correlated DNA methylation of IL-6, iNOS, Alu and LINE-1 with fractional exhaled nitric oxide, forced expiratory volume in 1 s and wheezing. Results: Fractional exhaled nitric oxide increased in association with lower promoter methylation of both IL-6 (+29.0%; p = 0.004) and iNOS (+41.0%; p = 0.002). Lower IL-6 methylation was nonsignificantly associated with wheezing during the week of the study (odds ratio = 2.3; p = 0.063). Conclusion: Our findings support the use of nasal cell DNA for human epigenetic studies of asthma.

KEYWORDS: airway obstruction asthma children DNA methylation epigenetics inflammation

Asthma is the most common chronic disease of childhood in developed countries, affecting nearly 6.5 million children in the USA [1], and 234.9 million individuals worldwide [2]. Airway inflammation is a key feature in the pathogenesis of childhood asthma [3], and is tion of promoters in specific genes, including characterized by the presence of inflammatory IL-6 and iNOS, the bulk of DNA methylation

including allergic asthma, and have been shown to induce the expression of other genes that might contribute to the asthma phenotype [14].

Although inflammation-related processes have been associated with changes in DNA methylaifang Hou⁵, & Annibale Biggeri⁴

Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease

Diane E. Handy, Rita Castro and Joseph Loscalzo Circulation 2011;123;2145-2156 DOI: 10.1161/CIRCULATIONAHA.110.956839

Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514

Copyright © 2011 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online

Variable DNA Methylation Is Associated with Chronic Obstructive Pulmonary Disease and Lung Function

Weiliang Qiu1, Andrea Baccarelli2, Vincent J. Carey1, Nadia Boutaoui3, Helene Bacherman1, Barbara Klanderman¹, Stephen Rennard⁴, Alvar Aqusti⁵, Wayne Anderson⁶, David A. Lomas⁷, and Dawn L. DeMeo^{1,8}

Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases

Lucia Migliore a,*, Fabio Coppedè b

Conclusion

Thanks to: Prof dr P. Hoet, dr Katrien Poels, A. Tabish, S Pauwels

