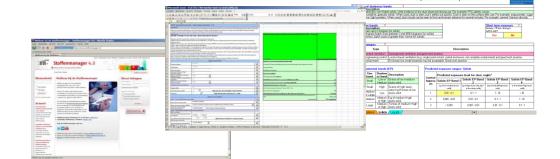
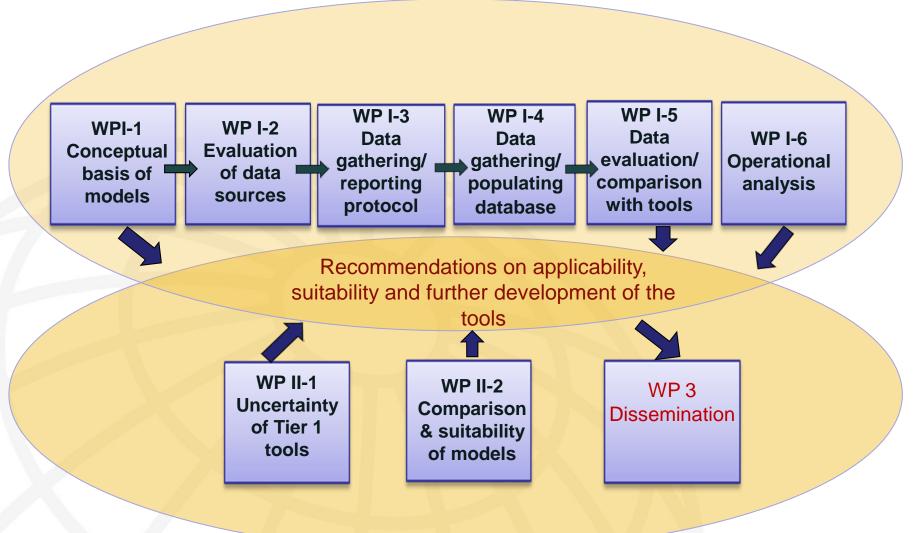


eteam Project: Between-user reliability exercise


J Lamb, K Galea, B Miller, L MacCalman, M van Tongeren, G Hazelwood and S Rashid

Overview

- eteam Project
- Background and aims
- Format
- Coverage
- Results
- Main sources of variation in tools
- Conclusions
- Recommendations

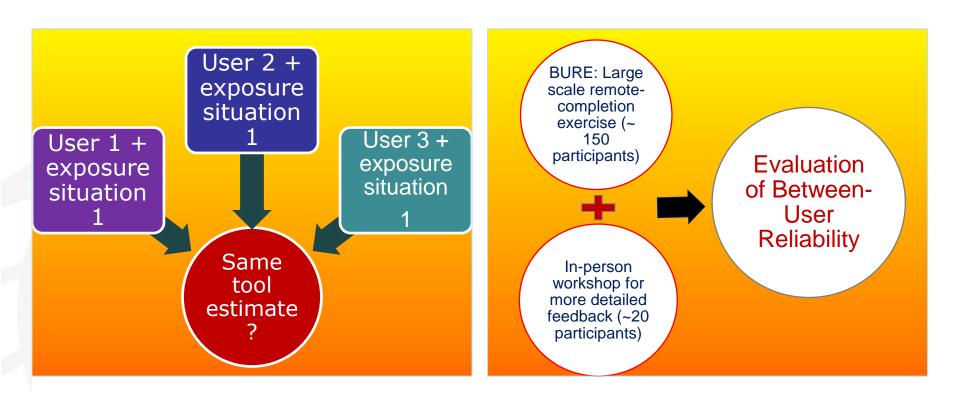

eteam Project

- Funded by BAuA
- Collaboration between IOM and Fraunhofer-ITEM
- Advisory Board, consisting of
 - Tool developers (ECETOC, TNO/ArboUnie, BAuA, EBRC)
 - Major data providers (IFA, NIOSH, HSE, SECO)
- Links with other projects (Switzerland, US, Sweden)

Project overview

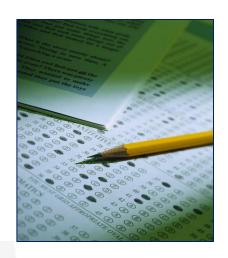
Tools

- ECETOC TRA Versions 2 & 3
- EMKG-EXPO-Tool
- MEASE Version 1.02.01
- Stoffenmanager Version 4.5
- RISKOFDERM Version 2.1
- EASE- conceptual evaluation process


Aims of eteam Project

- Evaluate the scientific basis of the tools
- Determine their user-friendliness
- Assess the between-user reliability
- External validation of tool estimates via comparison with measurement data
- Provide practical recommendations to developers, users and regulators on how to use the tools most effectively

Aim: Examine how consistent tool users are in making choices in comparison with other users



Confidence in a tool's predictions requires confidence in its reliability

BURE Format

- Collect tool estimates from multiple users for a selection of common exposure situations
- 6 tools: participants asked to generate inhalation & dermal estimates for each tool- situation combination
- Simple guides on tool installation and use
- Standard worksheets used to collect results
- Background questionnaire
- Final feedback questionnaire

Exposure situations

- 20 varied workplace situations: inhalation +/dermal exposure potential
- Standard 1 page A4 format
- Textual description of typical workplace exposure settings
- Professional & industrial settings

- Information provided on
 - ✓ Vapour pressure
 - ✓ Molecular weight
 - ✓ CAS number
- Variable information on other exposure determinants e.g. RMMs, task duration, environment
- Powders, liquids and fumes

Situation 4: Use of Xylene in Formulations- Mixing of chemicals in an Open Vessel

Please assess inhalation and dermal exposure to xylene in the situation described below.

When entering data into the tools during the exercise, <u>please use the CAS number</u>, <u>molecular weight and vapour pressure value</u> (which is for **pure xylene** (mixed isomers)) given in the table below.

This situation involves industrial mixing of liquid chemicals, including xylene. The operator stands on a platform above the vessel to mix the raw materials for the process, which takes place in Work Area D.

The mixed product (Product D) contains 60% xylene (mixed isomers). Product D is mixed in 50 litre batches.

The process takes place at room temperature (20°C).

There are fixed capture hoods above the mixing process and adequate general ventilation.

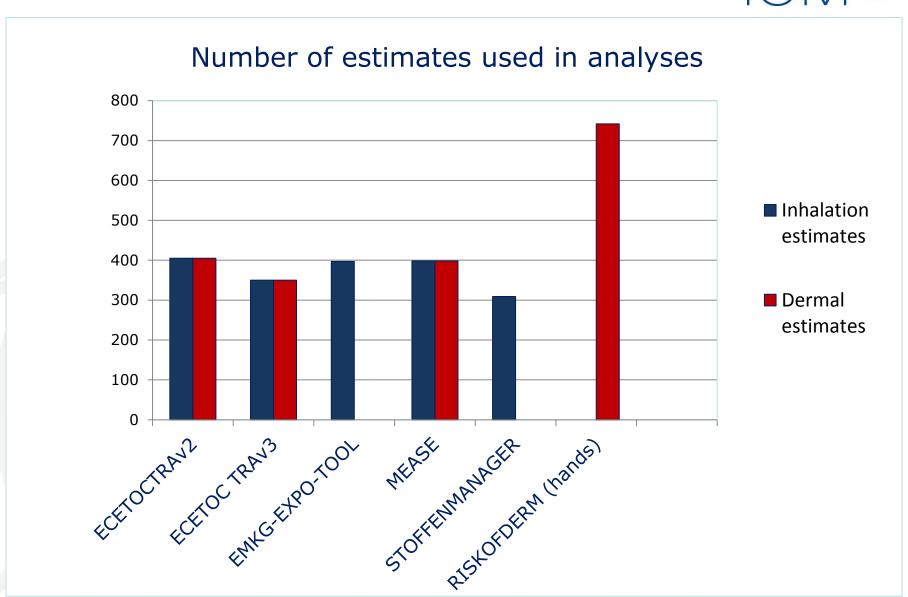
The activity takes place for 5 hours per 8 hour shift.

There is no personal protective equipment and no respiratory protective equipment worn during the activity.

2. Product/ Substance Information

Product	Supplier	Substance Name	CAS Number	Molecular Weight/ gmol ⁻¹	Vapour pressure at 20°C/ Pa	Concentration of Xylene in Product D (%)
Product D	Supplier D	Xylene (mixed isomers)	1330-20-7	106	1200	60

Results: BURE participant population


- Sector
 - majority consultancy/ industry (57%)
- Location
 - mainly EU (84%)
- Main reason for carrying out exposure assessments
 - REACH exposure assessment (40%)
- English language ability
 - majority self-assessed as native/excellent/good

- Experience of tools
 - Most experience of ECETOC TRAv2/v3, then Stoffenmanager
 - Exposure assessment experience
 - even split across all categories (~20% each category)

Final dataset

Assessor-related variation/ total variationall situations

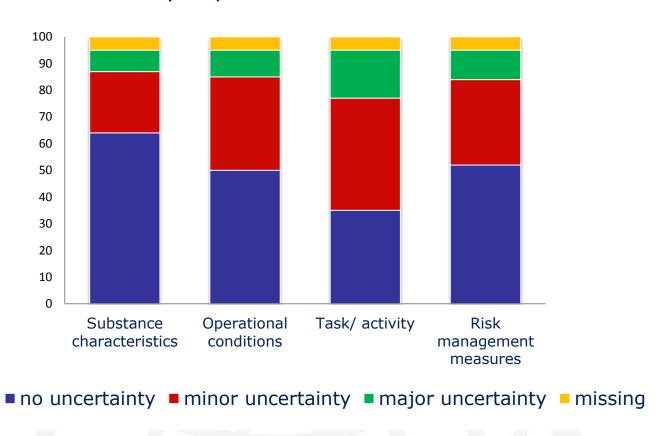
Tool	N	Var _{Total}	Ratio (97.5%ile: 2.5%ile)
Inhalation exposu			
ECETOC TRAv3 (mg/m³)	350	2.63	577
ECETOC TRAv2 (mg/m³)	405	2.19	331
MEASE (mg/m ³)	398	6.43	20746
EMKG-EXPO-TOOL (mg/m ³)	397	4.00	2540
STOFFENMANAGER (mg/m³)	309	2.20	335
Dermal exposure			
ECETOC TRAv3 (mg/kg/day)	350	2.06	278
ECETOC TRAv2 (mg/kg/day)	405	1.31	90
MEASE (mg)	398	4.47	3975
RISKOFDERM (hands) (mg)	742	6.66	24744

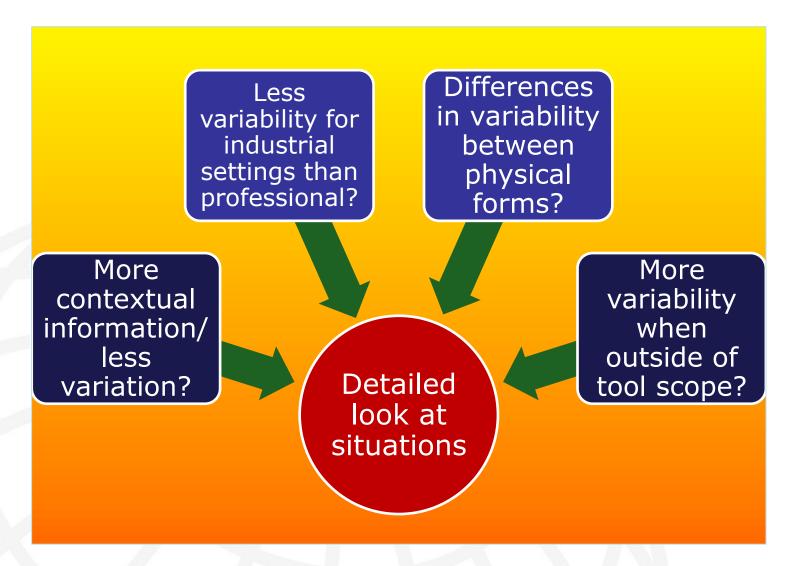
Assessor-related variation/ total variationapplicable situations only

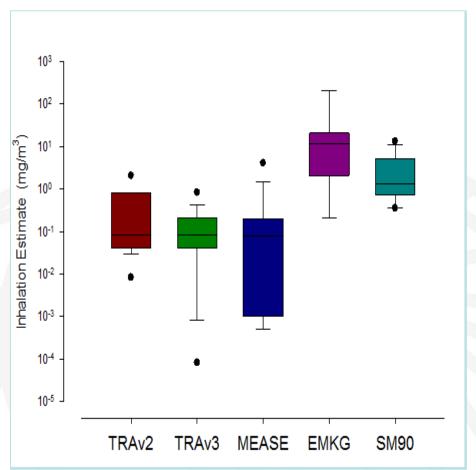
Tool	N	Var _{Total}	Ratio (97.5%ile: 2.5%ile)
Inhalation exposure			
ECETOC TRAv3 (mg/m³)	326	2.59	549
ECETOC TRAv2 (mg/m³)	365	2.28	372
MEASE (mg/m ³)	151	4.44	3866
EMKG-EXPO-TOOL (mg/m ³)	313	3.23	1147
STOFFENMANAGER(mg/m³)	280	1.77	184
Dermal exposure			
ECETOC TRAv3 (mg/kg/day)	326	1.93	231
ECETOC TRAv2 (mg/kg/day)	365	1.31	88
MEASE (mg)	151	4.66	4732
RISKOFDERM (hands) (mg)	674	6.40	20270

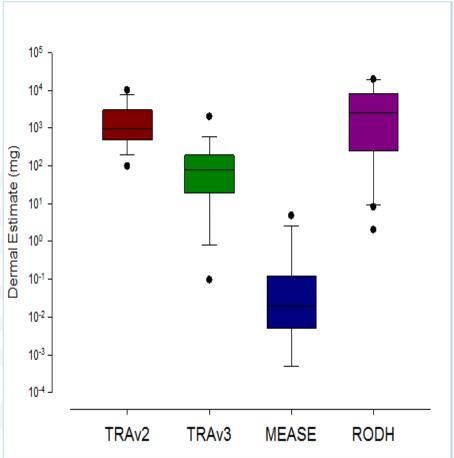
Variation related to participants' characteristics

- Linear mixed effects statistical models used to calculate variance
- No obvious or consistent trends observed
- Systematic differences small in comparison with total between user variability
- More experience in assessing exposure does not lead to less variation
- People who do more REACh assessments are no more consistent than others

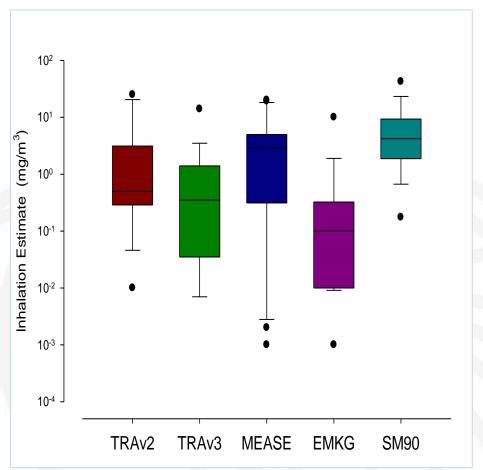

- Regulators are not obviously conservative, industry not obviously optimistic
- English language ability may have some small effect for MEASE, however not consistent

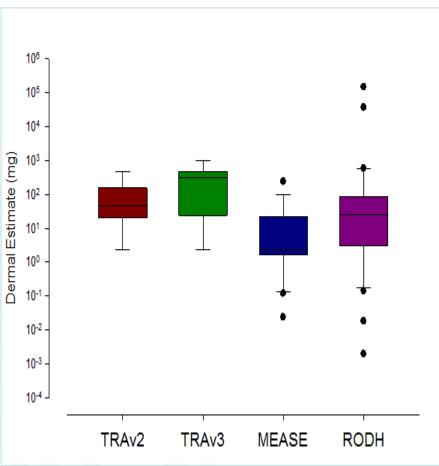

How uncertain were participants when choosing inputs?


Level (%) of uncertainty experienced in choosing input parameters- inhalation



Situation 7: Changing of filters in paint spray booth





Inhalation estimates

Dermal estimates

Situation 11: Small scale weighing of amoxicillin powder

Inhalation estimates

Dermal estimates

Common sources of variation

- Choice of PROC code/ handling description
- Assessing main process or subtask?

- Dustiness
- Intrinsic dustiness or linked to energy in process
- Difficult to assess non-visually

- Risk management measures
 - Wide variety within situation
- Choice of industrial vs professional
 - Participants and delegates seemed to struggle with this
 - No consistent determining factor

- Duration of activity
 - "borderline" times

Other sources of variation

- Erroneous choices
 - physical form of molten metals
 - dermal exposure situations

- Differences in interpretation/ mis-reading of information
- Inclusion/ exclusion of described risk management measures

- Lack of awareness of tool guidance
- Tendency to use basic instructions provided rather than actual tool information
- Typographical/ transcription errors

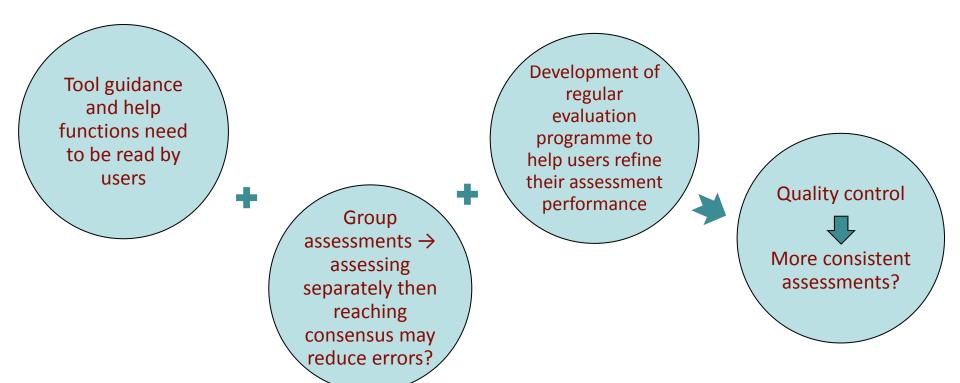
Limitations of BURE

- Recruitment may not have reached typical tool users
- Self-selection regarding English language

- Different to iteration process used under REACh
- Workplace specific situations used vs sector generic scenarios
- Assessment outputs are the estimate and the tool parameter choices

Conclusions

- Most variation between users is not obviously attributable to their personal characteristics
- Ease of translation and level of uncertainty are not predictors of level of variation
- Perceived level of uncertainty greater for dermal assessments and for solids- general levels of experience of these tasks?
- Participants, on occasion, conflate determinants when allocating inputs which may affect variation and validity of the estimate
- Assessment of overall process type rather than described exposure-prone task


Conclusions (2)

- Professional situations gave rise to more variation in estimates- lower familiarity with these activities?
- Allocation of level of dustiness seems to be challenging and variable
- For all tools, the choice of task/ activity for a given situation showed great variation between people who were assessing the same, reasonably well-described exposure settings
- Similar findings in reliability studies for other assessment tools
- Overall, the exercise suggests that between user variation in interpretation of exposure determinants could be an important issue for the standardisation of REACh processes

Recommendations.....

