KU LEUVEN

Novel biomarkers of chemical-induced asthma: a murine model

Jeroen Vanoirbeek

Asthma

1. Chronic airway disease: prevalence: 5-10%, 300.000 people affected world-wide

2. Reversible airflow limitation, airway hyperreactivity &

Asthma

- 1. Rapid increase of allergy and asthma in past 40 years
- 2. Changes in gene pool unlikely
- 3. Changes in "environment"?
 - Hygiene, lifestyle, diet, ...
 - Air pollution (indoor, outdoor)
 - Specific chemicals?
- 4. Mechanisms?

Occupational asthma

1. Definition:

- occupational asthma is a disease characterized by variable airflow limitation and/or airway hyperresponsiveness due to causes and conditions attributable to a particular occupational environment and not to stimuli encountered outside the workplace
- 2. 9-15% of all adult asthma is due to exposures on the work floor
- 3. The most common cause of work-related lung diseases

Occupational agents

High molecular weight (HMW) compounds (≥ 5 kDa)

- Animal proteins
- Plant proteins
- Enzymes

- Low molecular weight (LMW) compounds (< 5 kDa)
- Chemicals
- Metals
- Wood dust
- Pharmaca

Immune sensitization

IgE mediated or

non-IgE mediated

LMW sensitizers Isocyanates, persulphates,...

No immune sensitization

Non-IgE mediated

LMW irritants

Chlorine, Ammonia, ...

IgE mediated

HMW allergens

Flour, Lab animals, ...

Occupational agents

- Diisocyanates
 - Highly reactive, low molecular weight compounds
 - Most common cause of chemical-induced occupational asthma
 - Used for the production of polyurethanes, foams, paints, etc

Skin - lung

- Development of chemical-induced asthma
 - Primary route of exposure and initiation of immune response
 respiratory tract
 - Regulation and prevention of OA almost exclusively focusses on airborne exposures
 - Despite reduction in workplace respiratory exposure, diisocyanate asthma continues to occur

Focus on skin exposure

Occupational asthma

Mechanisms?

- Role of chemical properties ?
 - chemical reactivity
 - irritant properties
- Pathways of sensitization ?
 - via dermal route?
- Immunological mechanisms ?
 - usually no specific IgE antibodies
 - cellular mechanisms

Implications

- Hazard identification
 - Prediction of asthmogens
- Prevention
 - Avoid skin contact
- Surveillance & diagnosis
 - Identification of sensitized subjects
 - Identification of sensitizing agent in affected subjects

Aim

To identify (early) biomarkers of chemical-induced asthma and sensitization to chemicals using proteomics techniques

Proteomics

 Proteomics is a global strategy in which all proteins (the proteome) derived from a cell, tissue, body liquid or whole organism, are simultaneously visualized and identified

$$pH = 3$$

$$pH = 10$$

DIGE

MALDI-TOF MS

 Classical research: focus on immune related cells and cytokines, resulting in many insights, but exact mechanisms of OA still unclear

 Development of new & sensitive methods → new approaches

Neutrophils

Macrophages

Eosinophils

Auricular lymph nodes

BAL

Serum

p < 0.01	
Diff. Spots	53
Identified	27
Up	14
Down	13

p < 0.01	
Diff. Spots	210
Identified	72
Up	55
Down	17

p < 0.01	
Diff. Spots	40
Identified	18
Up	9
Down	9

Lymphocyte specific protein-1

- > Literature:
 - > Expression:
 - lymphocytes
 - neutrophils
 - macrophages
 - Chemotaxis & activation neutro
 - ➤ Overexpression → dysfunction
 - Regulated by IL-4

Conclusions

1. First systematic & systemic proteomics approach in a model of occupational asthma

2. Dermal sensitization and a single airway challenge leads to profound proteome changes in multiple compartments

3. Physiological and immunological changes are reflected by changes in the proteome

Proteome changes in auricular lymph nodes and serum after dermal sensitization to toluene diisocyanate in mice

- 1. So far, no study has focused on early time points
- 2. Human (early) biomarker research is complicated: only when disease has established

- 1. So far, no study has focused on early time points
- Human (early) biomarker research is complicated: only when disease has established
- 3. Rationale: investigate changes in the proteome during sensitization to identify (early) markers of sensitization

Auricular lymph node weight

Lymphocyte subpopulations

2D-DIGE workflow

auricular lymph nodes

1 application

2 applications

p < 0.01	
Diff.	38
spots	
Identified	26
Up	15
Down	11

p < 0.01	
Diff.	58
spots	
Identified	35
Up	19
Down	16

serum

1 application

- / Anniication	
2 application	
	-

p < 0.01	
Diff. spots	7
Identified	3
Up	3
Down	0

p < 0.01	
Diff.	16
spots	
Identified	10
Up	4
Down	6

KU LEUVEN

auricular lymph nodes

serum

auricular lymph nodes

1 application 2 applications

serum

1 application

2 applications

Lymphocyte specific protein-1

Literature:

- > Expression:
 - lymphocytes
 - neutrophils
 - macrophages
- Chemotaxis & activation neutro
- ➤ Overexpression → dysfunction
- Regulated by IL-4
- Down regulated in complete model (Haenen et al., 2010)

> Coronin 1a

> Literature:

- Member of well-conserved family of coronin proteins
- ➤ Mediates Ca²⁺ release
- Involvement T cell activation and proliferation

- > Hemopexin
- acute phase protein
- > Literature:
 - Involved in innate body defense
 - Upregulated during inflammation
 - Also in complete model (BAL and serum)

Hemopexin

Conclusions

 Sensitization causes profound differences in the proteome of TDI-sensitized mice compared to control mice

2. A subset of proteins were confirmed in an independent set of mice

3. Validation needed in human exposed workers

Acknowledgements

Center for Environment and Health

Dr. STEVEN HAENEN

Prof. Peter Hoet

Prof. Ben Nemery

Dr. Vanessa De Vooght

Lab of Functional Genomics & Proteomics

Dr. Elke Clynen

Prof. Liliane Schoofs

Evelyn Maes

Prometa

Dr. Geert Baggerman

