Risk assessment of occupational used nanomaterials

Polder- en niet-poldermodellen vergeleken

Marcel Vervoort (Safety Engineer Nikhef & AMOLF)

Ralf Cornelissen, central Health & Safety Officer (FOM)

17th of April 2013

Frans Vlek (Netherland School of Public & Occupational Health)

Risk assessment of occupational used nanomaterials

A comparison of risk assessment methods in order to determine the risk of occupational used nanomaterials in a research environment

Polder- en niet-poldermodellen vergeleken

Introduction

Nanomaterials and properties

Risk assessment in general

Aim of the study

Results

Inventory

Theoretical comparison (criteria analysis)

Field study

Conclusions

Recommendations

Nanomaterials and properties

Definition used in the study:

Engineered Nano Particles (ENPs) – Nanomaterials intentionally made by humans Dimensions: one or several dimensions within the range of 1 – 100 nm

Classification – all nanomaterials

Origin		
Natural	(e.g. ashes from volcanoes)	
Man-made	Unintentional	Intentional
	Products during certain processes (i.e. manganese nanoparticle during welding and emission of nano carbon particles during combustion)	Synthetic nanomaterials (production of nano carbon tubes and TiO_2 within nano size)

Introduction

Nanomaterials and properties

Properties of ENPs: Dimension (size)

Shape

Chemical composition (including health-related properties)

Surface (dimension & chemical composition)

Solubility

Exposure and health effects

Main exposure routes: Via respiratory system (lungs) and skin (dermal) Health effects: Inflammation, cytotoxic, fibrosis, asbestos-like symptoms

Properties of a research environment

- -Small amounts (µg to a kg)
- -Large variety
- -Continuous changing processes
- -Well equipped labs
- -Highly educated employees
- -Development of new ENPs or moderate ENPs

Introduction

Risk assessment in general

Aim of the study

 Identify and list the available risk assessment methods for assessing the risks of ENP use;

Literature study

•Evaluate and compare the most frequently used risk assessment methods theoretically and in the field;

Literature study
Comparison of criteria
Questionnaire

Studying four processes
Applying 10 risk ass. methods

Determine which methods are appropriate for use in research institutes.

Literature study – Available Risk Assessment Systems

32 Risk assessment methods available for assessing risk of ENP-use (May 2012)

Risk Assessment Method

Referred to as

Selection of Risk Assessment Methods (RAMs)

11 of the 32 systems were selected for further study Main criteria:

- -Complete Risk Assessment Method
- 'Freely' available
- -Developed for the assessing the risk of ENP-use
- -Applicable to occupational settings
- -Used in the field

Misk Assessifient Method	Neierreu to as
ANSES, development of a specific control banding tool for nanomaterials	ANSES
Control Banding Nanotool	CB-Nanotool
General Risk Management System	Chemical Control Kit (CCK)
Guidance working safely with nanomaterials and nanoproducts 'the guide for employers and	The Guidance
employees'	
ISO/TR 13121, Nanotechnologies – Nanomaterials Risk Evaluation	ISO-TR13121
Management of Nanomaterials Safety in Research Environment	EPFL-model
Nanosafety Guidelines	TU-Delft guidel.
Nanotechnology: Risk Assessment Model	ISPESL-model
Nanotoolkit - – Working Safely with Engineered Nanomaterials in Academic Research Settings	Nanotoolkit
Precautionary Matrix for Synthetic Nanomaterials	PM
Stoffenmanager Nano	SM- nano

Results

General comparison of the included RAMs

- 1. Comparison based on method
- 2. Comparison based on compagnies the RAMs were developed

Based on method

Three categories:

- Based on the e-COSHH(Control Banding)-method;
- Hazard assesement mainly based on physical properties;
- 3. Combination of 1 and 2.

Comparison based on method

	Main factors for hazard assessment						
	Category 1						
ССК	Hazard code (R-phrases) , health-related properties	e-COSSH					
CB-nanotool	Health-related properties, Shape						
SM- Nano	SM- Nano Hazard code (H- & R-phrases), health-related properties, shape						
ANSES	Hazard code (H- & R-phrases), health-related properties, shape						
	Category 2						
EPFL-model	Shape, used form (activity powder, suspension, matrix), aggregation	Mainly					
PM	Redox/catalytic activity, stability propert						
TU-Delft	Nano toxicity (general), pyrophoric effects	properties					
Guidelines							
The Guidance	Shape, solubility, persistence						
Nanotoolkit	Material state (solid, liquid and gas)						
Category 3							
ISPESL-model	Toxicological properties (health-related effects), Fire & explosion,	Comb. of					
	agglomeration/aggregation	cat 1 & 2					
ISO-TR13121	Toxicological properties (long and short term effects), Fire, explosion,						
	flammability, corrosiveness, reactivity						

General comparison of the included RAMs

Companies for which the RAMs were developed

Companies	Risk Assessment Method
Small and Medium enterprises	The Guidance
	Chemical Control Kit
	ANSES
	Stoffenmanager nano
	PM
Industry	ISO-TR13121
	Stoffenmanager nano
	PM
	The Guidance
Research/academic setting	EPFL-model
	Nanotoolkit
	CB-nanotool
	ISPESL-model
	TU-Delft guidelines

Risk assessment of occupational Criteria analysis for risk assessment Results used nanomaterials RAM Stoffenm. TU-D Nano-ISPESL ISO-TR ANSES Guidance PM Criteria for Criteria Control ki Guidelines model nanotool nano toolkit 13121 Hazard assessment related to the physical proporties Shape (general) Physical related prop. EPN's non wires/tubelar -Shape -Size Anisotrope Spherical -Aggregation/ agglomeration Solubilty (general) -Solubility Insoluble -Surface area Soluble Surface chemistry -Surface chemistry Surface area Stability Criteria related to health Health related prop. Mutagenicity - Mutagenicity Sensitizing - Toxicity - Carcinogenicity Reprotoxicity - Irritating (dermal) Toxicity - Reprotoxicity Chemical related prop. Corrosiveness - Flammability Explosiveness

- Reactivity

CorrosivenessExplosiveness

Pyrophiricity

Reactivity/catalytical activity/

Cat. 1 Cat. 2 Cat. 3

Results

Criteria for exposure assessment

Criteria analysis for risk assessment

Discussion: are one or two criteria adequate for exposure assessment?

Field study – The use of RAMs at workplaces

Problem: how can the different RAMs be compared?

Comparing apples with pears????

Solution: Use the recommended risk reducing measures!

Field study – The use of RAMs at the workplace

Chemical Control Kit	CB- Nanotool	SM-nano	ANSES	The Guidance	PM	Nano-toolkit	EPFL-model	ISPESL- model
4	RL4	ı	CL5	С	В	Cat 3	Nano3	High
3	RL 3	п	CL4			Cat 2	Nano2	
2	RL2		CL2 CL3	В			Nano 1ri	Middle
1	RL1		CL1	A	A	Cat 1	Nano1	Low
	Control Kit 4 3	Control Kit Nanotool RL4 RL3 RL2	Control Kit Nanotool 4 RL4 I RL3 II 2 RL2	Control Kit Nanotool 4 RL4 I CL5 3 RL3 II CL4 CL2 CL3	Control Kit Nanotool RL4 I CL5 C RL3 II CL4 RL2 CL2 CL3 B	Control Kit Nanotool RL4 I CL5 C B RL3 II CL4 RL2 CL2 CL3 B	Control Kit Nanotool Guidance CL5 C B Cat 3 RL3 II CL4 CL2 CL3 B Cat 3 Cat 2	Control Kit Nanotool Guidance 4 RL4 I CL5 C B Cat 3 Nano3 3 RL3 II CL4 Cat 2 Nano2 2 RL2 CL2 CL3 B Nano 1ri

TU-Delft guidelines: risk levels are not applied

ISO-TR13121 excluded: risk evaluation method not exactly defined

Studied processes:

Process 1: Use of nanoform SiO₂ at the UU

Process 2: Use of nanoform Al_2O_3 - Co_3O_4 at the UvA

Process 3: Production and use of Si/SiO₂ at the TU-Delft

Process 4: Use of nanoform Cr_2O_3 and Co_3O_4 at the UG

Analysis of the process and the risk analysis UU – use of nanoform SiO₂ in powder form and dispersion

Analysis of the process and the risk analysis UU – use of nanoform SiO₂ in powder form and dispersion

Risk assessment	Chemical Control Kit	CB- Nanotool	SM-nano	ANSES	The Guidance	PM	EPFL- model	Nanotoolkit	ISPESL- model
Risk level Step 1			(1) (2)						
	1	RL2	II III	CL4	В	В	Nano 3	Cat 2	Middle
Rec. RRM	none	none	NA	Containment	None	NA	none	none	NA
Risk level step 3&4			(1) (2)						
	2	RL2	II III	CL2	В	В	Nano 1	Cat 1	Middle
Rec. RRM	none	none	NA	none	None	NA	none	none	NA
Risk level Step 5			(1) (2)	3 4					
	2	RL2	II III	CL2 CL4	С	В	Nano 1	Cat 2	High
Rec. RRM	FH/LEV	FH/LEV	NA	CL2: LV CL4: containment	Prec. Principle	NA	FH	FH/BC	NA

Step 1: Handling 20 - 30 mg of dry SiO_2 in fume hood

Step 3&4: Dispersion of SiO₂ in a fume hood **Step 5**: Sonication of SiO₂ in a open lab

BC: Biosafety Cabinet

FH: Fume Hood

LV: Local ventilation

LEV: Local Exhaust ventilation

NA: Not Applicable Prec: Precautionary

Conclusions Part I

Available Risk Assessment Systems

- Over 32 systems are available for assessing risks of ENP-use;
- Risk Governance, Risk Management and Risk Assessment Methods.

In detailed studied Risk Assessment Methods

- 11 RAMs were studied in detailed;
- Only 4 of the studied RAMs were developed for use in a research environment.

Used criteria for risk assessment in general

- A large variety of criteria are used for risk assessment.

(no standardization)

Nanotechnologies - Occupational risk management applied to engineered nanomaterials - Part 2: Use of the control banding approach

Conclusions Part II

Criteria for hazard assessment

- Some ENP specific criteria (e.g. surface area, agglomeration/aggregation)
 are often not used in RAMs;
- Chemical related criteria are most of the time not used.

Criteria for exposure assessment

- CB-nanotool, SM-nano and The guidance use almost all criteria for exposure assessment;
- Some RAMs (e.g. EPFL-model, ANSES, ISO-TR13121) use one or a few criteria for exposure assessment.

Conclusions Part III

Field study

- The risk level outcomes can deviate considerably for equal processes.
- A certain level of expertise is necessary for the use of the different RAMs

This is mainly caused by:

- The use of various criteria and/or differences in criteria interpretation lead to differences in risk level results;
- Differences in effect, of each criterion, on risk level determination, leading to different risk levels;
- Taking or not taking Risk Reducing Measures into account;
- Information used/ available during assessing the risks.

<u> </u>	For example: Si (ANSES) 3 → Hazard ←	1 (ANSES) A (CCK)
SDS	Io-li-tec nanomaterials [173]	Sigma-Aldrich [192] and Alfa Aesar [172]
Infor- mation	Flammable substance (H228), Skin corrosion/irritation (H315), Serious eye damage/eye irritation (H319)	Flammable substance (H228)
	Specific target organ toxicity – single exposure: resp. tract irritation (H335).	

Recommendations

- Develop guidelines/manuals for the current RAMs
- Standardization of RAMs
- More research on ENP-specific properties
- Measurement of ENPs in research settings

Questions?

Many thanks for your attention

