Testing strength and validity of Hazard Band engines

NVvA 13 april 2016, 11:15 co-project/co-presentation Erik.Vanmiert@Solvay.com Theo Scheffers@TSAC.nl

Hazard band: if no OELV exists

- Hazard part of Control Banding
- First done in pharmacy (Naumann, 1996)
- COSHH (1999, R-phrases based)
- Spaltenmodell, EMKG
- In-company SOLVAY OEB,.....
- SEIRICH (France INRS)
- ILO-toolbox (WHO)
- (semi) commercial Stoffenmanager RP(NL) /CHEMHYSS (Fr)/ ChemRADE (NL) ??

Limit Value & Hazard Band

Realm of hazard bands

- >172.000 substances identified (DOHSBase 16-01)
- 110.000 notified in the EU as being used
- Substances with OELV:
 - grow 800 (1990) \rightarrow 6000
 - 4000 LV/BM
 - 3662 DNELs
 - 2609 Kick-off's (CLH)

Notice for further information.

~104.000 substances used in EU without limit value,

but GHS/CLP classified:

ECHA's C&L inventory→

HB-engine in Control Banding

information may therefore require the prior permission of the third party owners. Please consult the Legal

different HB-engines allocate H/EUH-codes in different bands

Hazard band	DGUV IFA Spaltenmodell	HSE COSHH	BAUA EMKG (inhalation)*	Solvay OEB
E/5	300, 310, 330 (Tox) 340, 350, 350 (CM) EU032 (Tox gas release)	340, 341, 350(i) (CM) 334 (S) EU070 (<u>Tox</u>)	340, 350, 350i (CM) 360 _F (R)	372 (Tox) 340, 350 (CM) 334 (ICS)
D/4	301, 311, 331, 370, 372 (Tox) 341, 351, 360 _{xy} (CMR) EUH029, EUH031 (<u>Tox</u> gas release) 317, 334, 318, EUH070 (ICS)	300, 310, 330, 372 (<u>Tox</u>) 351, 360 _{xy} , 361, 362 (CR)	300, 330, 372 (<u>Tox</u>) 360 _D (R) EUH032 (<u>Tox</u> gas <u>release</u>)	300, 310, 330; 370, 373 (Tox) 314 (+ cat A), EUH071 (ICS), 341, 351, 360 _{xy} (CMR)
C/3	302, 312, 332(Tox) 314 ($pH \ge 11,5$, $pH \le 2$), 371, EUH071 361 _{f/d} , 373, 362 non-toxic gases which may cause asphyxiation	301, 311, 331, 314, 370, 373 (Tox) 317, 318, 335, EUH071 (IC)	301, 331, 314, 370, 371, 373 (Tox) 334 (S) 341, 351, 361f/d (CMR) EUH031 (Tox gas release)	301, 311, 331; 371 (Tox) 304, EUH070 (lung, eye damage) 314 cat B and C, 317, 318, 335 (ICS) 361, 362 (R & Lact)
B/2	315, 319, 335, ** (I) 304, EUH066, 336 (solvents) ***	302, 312, 332, 371 (<u>Tox</u>)	302, 332 (<u>Tox</u>) 318 (C)	302, 312, 332, 336 (Tox) 315, 319, EUH066 (I)
A/1	substances which experience shows to be harmless (e.g. water, sugar, paraffin etc.)	303, 313, 333(GHS Tox4) 315, 316, (GHS) 319, 320 (I) 304, 305 (Aspiration) 336, EUH066 (solvents) and all H-numbers not otherwise listed	319, 335 (I) 336 (solvent) 304 (Aspiration) Non health hazard H- statement codes	303, 313, 333 (GHS Tox 4) 305 (ICS) 316 (GHS-> noCLP), 320 (GHS eye irr 2b->CLP 319)

Hazard band allocation differences

Dibenzylperoxide (CAS# 94-36-0; ID# 617-008-00-0)

EU harmonized classification: H241, H317, H319

Hazard band allocation	IFA Spaltenmodell (2011)	COSHH (2009)	EMKG-HOI (2009)	S-OEB
Eye Irrit. 2 H319	2	1	1	2
Skin Sens. 1 H317	4	3	-	3
Final Hazard-Band	4	3	1	3

Theo Scheffers question: how to maximize the HB-engine/OELV relation?

HB-engines:

COSHH

Spaltenmodell

EMKG

S-OEB

ILO SEIRICHH IFA (2015)

• • • •

• • • •

Context

Solvay's questions:

How to get an accepted global HSE CB approach that aligns or includes the national CB-tools.

- 1. How does S-OEB perform relative to COSHH, IFA and EMGK?
- 2. Are the S-OEB concentration ranges valid?

Results:Difference in Hazard Band allocations

Relative to S-OEB, the 3 HB systems assign equal bands for at least 40% of the substances. The remaining substances differ at least one band, with IFA placing more substances in a higher and EMKG doing the opposite

Results: Strength of differentiation rel. to actual OELV

Log-normal distribution

Theory

Cumulative log-normalized probability plot

Theory

Cumulative log-normalized probability plot

Actual

Results:Strength of differentiation rel. to actual OELV

HB-System	p(S-W) of the residuals	Percentage of overall log(OELV) variability explained by hazard banding	Homogeneity of log(OELV) variance within the hazard bands (p(Levene))	Equidistant log(OELV) means. P(Non-Linear contrast.)	Number of pairwise independent log(OELV) means (p < 0.05)	Overall Strength Score
Vapour/gas (n=	=158)					
S-OEB	3 (52.6%)	3 (38%)	2 (18.7%)	4 (72.2 %)	4 (4 out of 4)	<mark>16</mark>
соѕнн	1 (4.02%)	1 (25%)	1 (4.3%)	2 (53.5 %)	1 (1 out of 4)	6
EMKG	4 (90.9%)	4 (41%)	3 (28.1%)	1 (5.5 %)	2 (2 out of 4)	14
IFA	2 (12.9%)	2 (36%)	4 (33.8%)	3 (70.1 %)	3 (3 out of 4)	14
Dust/aerosol (ı	n= 71)					
S-OEB	1 (0.3%)	4 (50%)	4 (79.3%)	2 (7.8 %)	3 (2 out of 3)	<mark>14</mark>
соѕнн	2 (2.5%)	2 (41%)	2 (16%)	3 (17.4 %)	1 (1 out of 3)	10
EMKG	3 (2.9%)	3 (49%)	1 (12.7%)	4 (64.0 %)	3 (2 out of 3)	<mark>14</mark>
IFA	4 (4.2%)	1 (38%)	3 (42.7%)	1 (0.7 %)	3 (2 out of 3)	12

S- OEB relates at least as strongly to OELV as the other HB systems

Results: Validity of the airborne concentration ranges

(2 HB systems only)

Hazard Band	S-OEB concentration range		COSHH concentration range		
	vapour/gas dust/aerosol		vapour/gas	dust/aerosol	
	(ppm) (mg/m³)		(ppm)	(mg/m³)	
E/5	0.005-0,05 0.001-0.01		Not established, consult a specialist		
D/4	0.05-0,5	0.01-0.1	<0.5 <0.01		
С3	0.5-5	0,1-1	0.5-5	0.01-0.1	
B/2	5-50 1-10		5-50	0.1-1	
A/1	50-500	10	50-500	1-10	

Results:

Validity of the airborne concentration ranges

The use of the lower limits of the S-OEB concentration ranges as "indicative exposure limits" for tier 0/1 risk assessment is appropriate.

Conclusions

- The strength of the relation between a HBengine and OELV can be determined using 1 picture and 5 statistical indicators with high discriminating power despite a limited dataset
- IFA, EMKG and S-OEB perform better that COSHH with S-OEB having the highest rank

Making it public

R-phrases based

Kick-off grenswaardeniveaus (TGG 8 uur) gebaseerd op het TRGS440							
gevaarklassenschema							
		Gevaarklasse					
	1	2	3	4			
R-zinnen	36, 37, 38,	20, 21, 22	23, 24, 25, 29,	26, 27, 28, 32,			
	65, 66, 67*	34, 41, 62,	31, 33, 35, 40,	45, 46,			
		63, 64	42, 43,	48/23,24,25,			
			48/21,21,22,	49			
			60, 61, 68				
f grenswaarde per g	evaarklasse en	fysische staa	it:				
Gasen en dampen (ppm) 4 0,2 0,01 0,001							
Aërosolen (mg/m³) 0,24 0,06 0,02 0,01							
	klassenschema R-zinnen f grenswaarde per g en dampen (ppm)	R-zinnen 36, 37, 38, 65, 66, 67* f grenswaarde per gevaarklasse en en dampen (ppm) 4	R-zinnen 36, 37, 38, 20, 21, 22 65, 66, 67* 34, 41, 62, 63, 64 f grenswaarde per gevaarklasse en fysische staa	R-zinnen 36, 37, 38, 20, 21, 22 23, 24, 25, 29, 65, 66, 67* 34, 41, 62, 31, 33, 35, 40, 63, 64 42, 43, 48/21,21,22, 60, 61, 68 If grenswaarde per gevaarklasse en fysische staat: en dampen (ppm) 4 0,2 0,01			

GHS/CLP H/EUH-code based

Proposed kick-off values for dust/aerosols (basis: COSHH Essentials)

Hazard Group	4	3	2 *	1	
H-statements	H334, H340, H341, H350, H350i	H300, H310, H330, H351, H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H301, H302, H311, H312, H314, H317, H318, H331, H332, H335, H370, H371, H373, EUH071	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066, other H- statements n.o.s., REACH Annex IV	
Dusts (mg/m³)	0,0001	0,01	0,1	1	

*: COSHH Essential Groups B+C combined

Proposed based kick-off values for gases/vapors (basis: DGUV IFA Spaltenmodell)

Hazard Group	4	3	2	1
H-statements	H300, H310, H330, H340, H350, H350i, EUH032	H301, H311, H317, H318, H331, H334, H341, H351, H360F/D/FD/Fd/Df, H370, H372, EUH029, EUH031, EUH070	H302, H312, H314, H332, H361f/d/fd, H362, H371, H373, EUH071	H304, H315, H319, H335, H336, EUH066, other H- statements n.o.s., REACH Annex IV
Gases/vapors (ppm)	0,001	0,01	0,1	5

- https://www.dohsbase.nl/en/content-2-2-2/kick-off-levels-2014/
- NVvA (≤2016)/CGC (2014)
- AIHCe2014/IOHA2015
- BOHS 2016

Publication submitted:

The Annals of Occupational Hygiene

16

Future steps

- International cooperation to align HB-engines
- Larger dataset
- Optimize allocation H/EUH codes statistically and/or expert judgement
- New concepts:
 - Less bands (4 bands = kick-off)
 - 110 GHS/CLP classifications HB-engine
 - Separate acute and repeated dose

Thanks!

- Blandine Doornaert
 Solvay, Toxicological and Environmental Risk Assessment (TERA), Lyon, France
- Prof. Gerard van Breukelen
 Department of Methodology and Statistics, CAPHRI Research
 School of Public Health and Primary Care, University of
 Maastricht, The Netherlands
- Nathalie Berne, Antoine Leplay Solvay, Industrial Hygiene, Lyon, France

Question:

What to do in practice with large difference between HB-engines?

Dibenzylperoxide

Hazard band allocation	IFA Spaltenmodell (2011)	COSHH (2009)	EMKG-HOI (2009)	S-OEB
Eye Irrit. 2 H319	2	1	1	2
Skin Sens. 1 H317	4	3	-	3
Final Hazard-Band	4	3	1	3

