A skin PBPK-model Evaporation and absorption

Consultancy & Services

CEFIC-LRI project

Wil ten Berge

Starting points of SkinPerm(1)

- A guesstimate of systemic absorption from dermal exposure to substances
- by using simple retrievable information:
 - molecular weight
 - water solubility (mg/litre)
 - vapour pressure (Pascal)
 - log(octanol/water) at pH 5.5 (skin pH)
 - density (mg/cm3)

Dermal permeation process (Cognis Skin Care Forum)

Starting points of SkinPerm(2)

- by using simple assumptions:
 - Kaq = Aqueous skin permeation coefficient (QSAR)
 Log(Kow), Mw (ten Berge 2009)
 - Psw = Skin/water partition coefficients (QSAR)
 Log(Kow) (minimum -1.38) (ten Berge 2009)
 - Skin permeation coefficient neat substance= Kaq/Psw
 - Maximum absorption in SC is 0.4 ml

Starting points of SkinPerm(3)

- by using simple assumptions:
 - estimate maximum mass in SC in equilibrium with a saturated aqueous solution (= Maq)
 - Msc is the actual mass in stratum corneum
 - postulate that,
 - the systemic absorp. rate is related to Msc/Maq
 - the systemic absorp. rate is maximum at Msc ≥ Maq

Starting points of SkinPerm(4)

- by using simple assumptions:
 - estimate evaporation from substance layer on the skin according to REACH Guidance App R14.1
 - evaporation rate from stratum corneum related to Henry coefficient and aqueous perm.coeff. Kaq
 - the evaporation rate is related to Msc/Maq
 - the evaporation rate is maximum at Msc ≥ Maq

Evaporation of non-occluded skin doses

- Modjtahedi & Maibach (2008)
 Benzeen
- Sayasombati & Kasting (2004)
 Benzylalcohol
- Vuilleumier, Flament & Sauvegrain (1995)
 12 perfume ingredients in alcohol
- Kasting & Saiyasombati (2001)
 Evaluation Vuilleumier et al. (1995)

Substance Absorption	% observed	% estimated
Benzene	0.2	0.4
Benzyl alcohol	48	57
Linalool	42	23
Dihydromyrcenol	34	39
10-Undecanal	55	48
Citronellol	59	57
2-Phenylethanol	83	56
(E)-Cinnamic alcohol	96	59
lpha-Damascone	43	46
Cis-7-p-Menthanol	53	66
2,2,2-Tri-chlorophenylethylacetate	59	51
MPCC	76	84
(E)-2-Benzylidene Octanal	96	89
15-Pentadecanolide	93	96

Absorption volatiles % Observed / Estimated

Application of DEET (0.1mg/cm²)

Application of DEET (0.1mg/cm²)

Application of DEET (1mg/cm²)

Single application of naphthalene on skin Absorbed dose after 24 hours

Conclusions

- 1. Simulation of evaporation from, metabolism in and permeation through the skin was done on the basis of QSARs and physical behaviour
- 2. Simulations were in line with experimentally observed evaporation and absorption
- 3. This method is to be used for risk assessment of dermal absorption of industrial chemicals (REACH)
- 4. This method might be helpful to improve the design of experimental dermal absorption studies