

Nederlands Kenniscentrum Arbeid en Longaandoeningen

A cross-sectional study of exposures, lung function and respiratory symptoms among aluminium cast-house workers

NKAL Dr. J. Rooyackers, longarts

Dr. Ir. R. Houba, Ing. V. Zaat, arbeidshygiënisten Drs. F. van Rooy, Drs H. Stigter, bedrijfsartsen

Ing. M. Zengeni, longfunctie-analist

Arbo Advies

Akkoord Ir. H. Boers, arbeidshygiënist

IRAS Prof. Dr. Ir. D. Heederik, IRAS

Institute for Risk Assessment Sciences

Aluminium casthouse study

- Respiratory health problems known in aluminum industry in potrooms (potroom asthma), not in casthouse area
- About half of the casthouse workers (N≈150) experienced respitory symptoms
- Company and/or occupational health service asked 'NKAL' for help
- Pre-study: exploration of all infomation available including medical files
- Study objectives:
 - Study and objectivate respiratory symptoms
 - Expoloration of exposures within the cast-house
 - Relationship between exposures and health outcomes

Production rocess

Selection of short video images

Adding magnesium cd-rom

Mi ing in oven

Slag scra ing and filling oven

Methods

- Exposures:
 - 2nd part presentation
- Health survey among 157 aluminium casthouse workers (response 86%)
 - Questionnaire
 - Spirometry
 - Serology & eosinophil count
 - Non-specific bronchial hyperresponsiveness testing
 - Medical interviews (sub-population)
- Cast-house workers compared to general population sample (EHRCS population)

Lung function (cast-house vs general pop.)

Table 3b Multiple linear regression analysis of pulmonary function variables on age, standing height, smoking in a population of Ale workers*

Determinant	FEV ₁	U 100	FVC		PEF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FEV ₁ /FVC	No.
to a control of the above the control of the contro	(ml)		(ml)		(ml/s)	A	%	
	β	SE	β	SE	β	SE	β	SE
Intercept	-3329	498	-6223	535	-2849	1578	111	6
Age	-38 [†]	2	-33 [†]	2	-64 [†]	6	-0.26 [†]	0.03
Height	5204†	262	7290 [†]	281	9263 [†]	830	-11 [†]	3
Smoking status (%) [§]								
Current smoker	-236 [†]	48	-124 [†]	51	-424 [†]	151	-2.66 [†]	0.62
Former smoker	-31	50	-42	53	209	158	0.12	0.65
Workers	-195 [†]	56	-142 [†]	60	-155	178	-1.26 [‡]	0.73
Adjusted R ² (%)	51	1	54		24		11	
		_						

Definition of abbreviation: SE = standard error.

^{*} n = 138, Caucasian males only, age between 30 and 65.

[†]p<0.05; [‡]p<0.10.

[§] Never smoked as reference group.

General population as reference group, n = 972, Caucasian males only, age between 30 and 65.

Questionnaire (cast-house vs general pop.)

Table 2 Adjusted Prevalence Ratios (PR) with 95% confidence interval (CI) of respiratory symptoms in Al workers and a general Dutch population sample of the European Community Respiratory Health Survey.

	Comparison with	Comparison with external reference population*				
	Aluminium cast-house workers	General population	a .			
	n = 144	n = 1000				
	n (%)	%	PR (95% CI)			
Trouble with breathing	*	ė,	S.			
Ever	53 (36.8)	18.9	1.9 (1.5-2.5) ‡			
Continuously	9 (6.3)	2.7	2.5 (1.2-5,3) ‡			
Repeatedly	18 (12.5)	6.9	1.8 (1.1-3.0) ‡			
Cough symptoms						
Daily cough	22/55 (40)	14.7				
Daily cough with phlegm	18/51 (35.3)	11.2				
Shortness of breath (SOB) and wheezing						
Exercise induced SOB	46 (31.9)	19.4	$1.7 (1.3-2.3)^{\ddagger}$			
Awakened due to SOB	11 (7.6)	6.1	1.4 (0.7-2.6)			
Wheezing	47 (32.6)	24.1	1.4 (1.1-1.8) ‡			
Wheezing with SOB	37 (25.7)	14.6	$1.8(1.3-2.5)^{\ddagger}$			
Awakened due to chest tightness	20 (13.9)	12.4	1.2 (0.8-1.8)			
Asthma						
Asthma attack (ever)	20 (13.9)	5.2	2.8 (1.7-4.6) [‡]			
Asthma attack, doctor diagnosed	17 (11.8)	4.8	2.6 (1.5-4.4) ‡			

^{*}Caucasian males only, age between 30 and 65.

[‡]p < 0.05; adjusted for age and smoking habits (categorical: never-, ex-, or current smoker)

Work-related symptoms cast-house workers

- 75/151 (50%) work-related upper & lower airway symptoms
 - 93% self report improvement on non-working days (40% of total study population)
- 14 (19%) workers changed jobs due to symptoms
 - 10 (71%) reported having asthma attacks (ever)
 - Detailed physician administered interviews
 - 5/14 report start of symptoms after exposure incident (3x chlorine)
 - 9/14 were treated by pulmonologist (8) or general physician (1) for asthma (others 5/14: COPD or no clear diagnosis)
 - 7/9 told they had no asthma symptoms at starting work in cast-house

Methods

Exposures:

- Inhalable dust
- Metals
- Fluorides (exposure and urine)
- Chlorine gas
- Sulphur dioxide
- Health survey among 157 aluminium cast-house workers (response 86%)
 - Questionnaire
 - Spirometry
 - Serology & eosinophil count
 - Non-specific bronchial hyperresponsiveness testing
 - Medical interviews (sub-population)

Inhalable dust exposure (8-hr TWA; N=88)

boxplot stofblootstelling per functie

Metals in dust

Sedimentation dust (N=2) & personal dust sample (N=1)

Metaal	Percentage metal in dust samples
Aluminium	47 - 90 %
Beryllium	< det - < 0,001 %
Boron	< 0,1 – 1,1 %
Chromium	< 0,1 – 0,3 %
Iron	15,2 – 18,3 %
Copper	< 0,1 - 0,4 %
Magnesium	1,7 – 14,4 %
Manganese	0,2 – 2,7 %
Sodium	1,1 – 15,4 %
Selenium	< 0,1 - 0,1 %
Titanium	< det - 0,2 %
Zinc	1,3 %
Zirkonium	< det - < 0,1 %

Exposure

- Real-time monitoring (QRAE with specific sensors):
 - Sulphur dioxide: no relevant signal
 - Chlorine gas:

Regular background exposure: 0 − 0.4 ppm

During leakage chlorine duct: 30 ppm

Taking sample: 3-4 ppm

STEL chlorine gas:
1.4 ppm

- Urine samples fluorides on two days (pre- and post shift; N=55)
 - Systematic but small increase over work-shift (including some controls)
 - Low compared to BEI (USA: ACGIH) & BAT (German)

Fluoride exposure (MDHS 35/2)

Datum	Shift	Funtie tijdens de meting	Extra functie info	Ademhalingsbeschermin g gedragen tijdens de metingen	Meetduur (min)	Stofconcentratie (mg/m3)	Concentratie fluor gasvormig (mg/m3)	Concentratie fluor deeltjes (mg/m3)	Concentratie fluor totaal (mg/m3)	aandeel gasvormig van totaal fluoride
Persoonlijk full-shift										
21-Oct-08	Ochtend	Plakkengieter	put 51, sidafil steken circa 10 min.	Nee	437	0,706	< lod	0,025	0,025	
21-Oct-08	Ochtend	Metaalrijder E-hal	afzuiging defect in electrolysehal	Nee	413	1,076	0,148	0,112	0,261	56,9%
21-Oct-08	Ochtend	Pannenman		Nee	391	0,599	0,097	0,056	0,153	63,3%
22-Oct-08	Ochtend	sectie electrolyse		Ja	334	0,628	0,039	0,034	0,073	52,8%
22-Oct-08	Ochtend	Plakkengieter	put 52	Nee	453	2,176	< lod	0,051	0,051	
22-Oct-08	Ochtend	Plakkengieter	put 51	nee	445	0,808	< lod	0,021	0,021	
Stationair full-shift										
21-Oct-08	Dag	Oven 19			384	0,414	0,049	0,029	0,079	62,7%
21-Oct-08	Dag	0ven 13			390	0,564	0,067	0,024	0,091	73,9%
21-Oct-08	Dag	Oven 17			385	0,404	0,167	0,036	0,203	82,1%
22-Oct-08	Dag	Bovenop de kraan			362	11,772	8,017	3,088	11,105	72,2%
22-Oct-08	Dag	TAC			390	0,534	0,190	0,040	0,230	82,5%
22-Oct-08	Dag	oven 19			390	0,720	0,033	0,030	0,063	53,1%

Ind = meting kleiner dan de detectielimiet

Grenswaarden: HF: 15-TGG: 1 mg/m3 of 1,5 ppm; 8hr-TGG: 1,5 mg/m3 of 1,8 ppm

30-9-2008 15:18 30-9-2008 15:14 30-9-2<mark>008 15:10</mark> N.B. Same peaks if no smoke is seen above the pots 30-9-2008 15:07 Pan in 14 30-9-2<mark>008 15:03</mark> 30-9-2008 15:00 Real-time HF montitoring above ovens 30-9-2008 14:56 30-9-2008 14:52 (Gasfinder; Tunable Diode Laser technology) 30-9-2008 14:49 HF-emissie boven mengoven 13 en 14 30-9-2<mark>008 14:45</mark> Pan in 14 + Cr 30-9-2<mark>008 14:42</mark> 30-9-2<mark>008 14:38</mark> 30 september 2008 30-9-2008 14:34 **a** 30-9-2008 14:31 30-9-2<mark>008 14:27</mark> 30-9-2<mark>008 14:24</mark> 30-9-2<mark>008 14:20</mark> 30-9-2008 14:16 30-9-2008 14:13 30-9-2<mark>008 14:09</mark> 30-9-2<mark>008 14:06</mark> Pan in 13 30-9-2008 14:02 30-9-2<mark>008 13:58</mark> Pan in 13 30-9-2008 13:55 30-9-2008 13:51 30-9-2008 13:48 ငြ ်ပု 25,00 15,00 5,00 30,00 20,00 bbm HE

Production process

- Selection of short video images
 - Empty pot in melting oven
 - (cd-rom I; 23.00)

Lung function vs irritant exposure (cast-house workers only)

Table 4a Personal characteristics and lung function test results adjusted for smoking status of cast-house workers* exposed to irritants..

	Exposure high	Exposure moderate	Exposure low (internal reference group)
n	43	43	53
Age - yr (sd)	44 (9.1)	45 (10.2)	48 (7.4)
Smoking status (%)			
Current smoker	58.1	51.2	43.4
Former smoker	30.2	25.6	30.2
Never smoked	11.6	23.3	26.4
FEV ₁ % pred sd)	104.3 (13.8)	102.2 (14.8)	101.3 (13.8)
FVC % pred (sd)	108.2 (11.6)	108.5 (13.5)	107.3 (12.6)
PEF % pred (sd)	117.5 (21.3)	111.1 (18.7)	115.2 (20.0)
FEV ₁ /FVC % (sd)	78.2 (5.9)	76.6 (8.2)	76.1 (6.7)
[†] Airway obstruction	1 (2.3)	3(7.0)	2(3.8)

^{*}n = 139, Caucasian males only

[†]Airway obstruction¹ (FEV₁/FVC \leq 70% and FEV₁ <80% pred)

Résumé

Exposur

- 1. High (s□mi)p□rman□nt □mission of HF & fluorid□s in casthous□
- 2. Incid □nt(s) with high chlorin □ p □ak □xposur □s
- 3. Low daily av rag xposur (inhalabl dust & fluorid s)

H □ alth □ ff □ cts

- 1. Many cast-hous work r port r spiratory symptoms
- 2. 40% of work rs work-r at d symptoms with improv ment on non-working days
- 3. Compar d with g n ral population significantly
 - a) Mor□r⊡spiratory symptoms
 - b) Low r spirom tric valu s
- 4. Majority of cast-hous work rs with job chang du to symptoms r port dasthma attacks
- 5. No cl□ar □xposur□-r□spons□-r□ationship

Discussion / Conclusion

- Low daily average exposures: dilution by natural ventilation on most days
- High emissions of HF/fluorides during day
- Many disturbances of optimal airflow: peak exposures likely
- Several (historic) incidents with chlorine
- Regular exposure to respiratory irritants is very likely to happen
- Type of respiratory effects can be explained by irritant exposure
- Study supports respiratory hazards of cast-house workers
- Peak exposures likely explain respiratory health effects
- Preventive measures should be taken
 - Focus on peak-exposures to respiratory irritants
- Health surveillance should be offered to the workers

Nederlands Kenniscentrum Arbeid en Longaandoeningen

Dr. J. Rooyackers, longarts Dr. Ir. R. Houba, Ing. V. Zaat, arbeidshygiënisten Drs. F. van Rooy, Drs. H. Stigter, bedrijfsartsen Ing. M. Zengeni, longfunctie-analist

www.nkal.nl

Institute for Risk Assessment Sciences