2e NVvA Mirror meeting prEN 689 14 April 2016

Theo Scheffers, NVvA representative

EN:689 1995 versus 2016

- Given a widespread reluctance towards workplace measurements the standard EN689:1995 was written with the focus on efficiency. (reduction of number of measurements)
- This approach can lead to a poor efficacy: obtain wrong conclusion: "working conditions are well controlled" (but in reality they are not!)

Green is somehow missing in the prEN_689:
NL RIE/stakeholder question

Blue parts in the Figure 1 are in the text but not in the current figure

REPRESENTIVENESS

Screenings test 5.5.2

Decision 5.5.2	Compliance	Non- compliance	No decision
Sample size N	All outcome < f*OELV	k > OEL	Otherwise: additional measurements
3	f=0.1		therwise dditional asuremer
4	f=0.15	≥ 1	Oth adc leasi
5	f=0.2		Ε

Workshop question (1)

What would you decide if:

- Three measurements 0.09; 0.08 and 0.09 mg/m³
- Filling bags
- $CV_{t}=30\%$
- OELV: 1 mg/m³
- 5.5.2. Compliance?

Decision 5.5.2	Compliance	Non- compliance	No decision
Sample size N	All outcome < f*OELV	k > OEL	ise: nal nents
3	f=0.1		Otherwise additional easuremer
4	f=0.15	≥ 1	Oth adc east
5	f=0.2		Ε

- GSD=1.07!
- Is this GSD representative for this exposure profile?
- If no, then validate SEG & measurements before compliance testing

Workshop question (2)

What would you decide if:

Three solvent measurements 0.01: 0.3 and 10 ppm

- Painting outside
- OELV: 100 ppm
- 5.5.2. Compliance?

	Compliance	Non-	No
5.5.2		compliance	decisio
Sample	All outcome	k > OEL	
size N	< f*OELV		ise: nal
3	f=0.1		therwise: dditional
4	f=0.15	≥ 1	Oth adc
5	f=0.2		

- GSD=31! (3 orders of magnitude)
- Representative GSD for this exposure profile?

Painters GSD, read-across Annals 1985

	Type of object	Number of painters*	Types of paint	Remarks
1	Apartment building	6	Chlororubber paint	
	Ambassador's house	4 H	Synthetic wall paint, prime colour varnish	
3	Telephone district centre	3 H	Alkyd resin, latex wall paint, synthetic wall paint	
4	Brewery	4	Synthetic wall paint, 2-component epoxy resin	
5	Furniture showroom	6 H	Alkyd resin	Spraying by 1 painter
6	Canteen	4	Structure wall paint, alkyd resin	Spraying by 1 painter assisted by 1 colleague
7	Room of regents in Lower House residence	4	Turpentine paint	Only 2 painters were sampled
8	Garage	5 H	Latex wall paint, synthetic wall paint, 2-component varnish	
9	Pumping station	4	Chlororubber paint	During only a few minutes were protective clothes with air refreshment worn
10	Laboratory	2 H	Synthetic wall paint	
11	Laboratory	3 H	Varnish, alkyd resin	
12	Distributing station	2	2-component polyurethane lacquer	Spray-painting was performed during several minutes

Painter group	Number of painters (n)	Tolerance factor k_7 *	Log normality P†	Geom. mean GM‡ (mg m ⁻³)	Geom. stand GSD§
House painters	20	2.752	0.85	58.66	2.086
Total group	45	2.408	0.38	100.9	2.673
House painters	20	2.752	0.50	0.15	1.936
Total group	45	2.408	0.04**	0.28	2.648

Screening test 5.5.2. evidence based?

Yes, if exposure variability GSD≤3!

Only in combination with a sound basic characterization (5.1), sampling strategy (5.2), measurement plan (5.3) and validation (5.4).

INRS (2005) ND2231

Decision 5.5.2	Compliance	Non- compliance	No decision
Sample size N	All outcome < f*OELV	k > OEL	Otherwise: additional neasurements
3	f=0.1		therwise dditional asuremer
4	f=0.15	≥ 1	Oth adc least
5	f=0.2		E

Workshop question (3)

What would you decide if:

- ≥ 6 measurement in a clean room
- GSD=2
- $CV_t = 5\%$
- C_{95%,70%}<OELV

prEN 689 (2016) 5.5.3

Compliance & reassessment	Non- compliance
C _{95,70%} ≤OELV	C _{95,70%} >OELV

- 5.5.3. Compliance?
- 5.4. Is a GSD=2 representative for a clean room?
- If no, then validate SEG & measurements before compliance testing

Workshop question (4)

What would you decide if:

- ≥ 6 measurement outdoor painter, solvent exposure
- GSD=1.4
- $CV_{t}=5\%$
- C_{95%,70%}<OELV

prEN 689 (2016) 5.5.3

Compliance & Nonreassessment compliance $C_{95,70\%} \le OELV$ $C_{95,70\%} > OELV$

- 5.5.3. Compliance?
- 5.4. Quality? Is a GSD=1.4 typical for a painter?
- If no, then validate SEG & measurements before compliance testing

Exposure variability

- Current prEN689 (Annex E) and AIHA IH_Stat condemns GSD>3 as "process out of control or poorly defined SEGs".
- Low GSD's quite often caused by:
 - sampling on one or a few consecutive days within a SEG.
 - small sample size, underestimating the GSD on the average
 - sloppy handling of non-detects
 - autocorrelation (one outcome determines the next)
 - 2-decades analytical detection methods (like gravimetric dust and inorganic acid sampling)
 - EM in stead of PAS
- Use your brains and expertise (and prEN 689)\$!

Exposure variability

- Current prEN689 and AIHA IH_Stat condemns GSD>3 as "process out of control or poorly defined SEGs".
- Compare your GSD with the typical variability for the exposure profile tested:
 - measurement series performed before
 - GSDs reported in large databases like the German MEGA and the French Colchis
 - Read across with comparable substances and workplaces
 - Modeling
 - Physical-Chemical properties

–

Deviation from lognormal

Example
Figure E.2 Annex E
of the Standard.
IH-Stat plot
N=9
GSD=2.045

TEST FOR DISTRIBUTION FIT	
W-test of logtransformed data (LN)	0.958
Lognormal (a = 0.05)?	Yes
W-test of data	0.964
Normal ($a = 0.05$)?	Yes

What to choose?

CVt Normal?

2 lognormal distributions?

Or one inaccurate low value?

Not the statistics, but the exposure determinants (5.1 thru 5.3) will tell!

Some workers deviates

If some workers deviate within a group individual controls may be more effective Solution

BOHS-NVvA guidance

prEN 689/NVvA-BOHS testing schemes

Remarks from NVvA mirror session 150919

Unclear (Introduction):

- why using this European Standard
- to whom it is addressed
- The additional value when used

Definition (clause 3):

What is Compliance ?

No start/ignite

Important issue

Compliance decision

- The screenings test 5.5.2. and the 1995 689 annex D.3 both have a three outcome of the compliance test (red, orange, green)
- The 6+ compliance test 5.5.3. has 2 outcome No (red) /periodic resampling decision (orange)

EN 689 (1995) Annex D.3

			Compliand	liance Non-compliance		ice	No decision	
				P(C>OELV)≤	.1%	P(C>OELV)>5	%	Otherwise: additional
		No						measurements
	compliance	decision	prFN 689 (2016) 5.5.3					
All outcome < f*OELV	k > OEL	ise: nal nents				, ,		Non-
f=0.1		erwi ditior uren			reas	sessment	CO	mpliance
f=0.15	≥ 1	Oth ado			C _{95.}	_{70%} ≤OELV	Cgr	5,70%>OELV
	All outcome < f*OELV f=0.1	All outcome < f*OELV f=0.1	All outcome <pre></pre>	All outcome < f*OELV f=0.1	Compliance Non- compliance decision All outcome < f*OELV f=0.1	All outcome < f*OELV	Compliance Non- compliance decision All outcome < f*OELV f=0.1 P(C>OELV)≤.1% P(C>OELV)>5 P(C>OELV)>5 Compliance & reassessment	Compliance Non- compliance decision All outcome < f*OELV f=0.1 P(C>OELV)≤.1% P(C>OELV)>5% P(C>OELV)>5% P(C>OELV)>5% P(C>OELV)>5% Compliance & reassessment compliance

Next steps 2016

- the CEN enquiry is now scheduled from 2016-06-02 to 2016-09-02 (3 months).
- During this period, each national bodies will organize a national consultation.
- The next WG 1 meeting will be held on 19th and 20th September 2016 in Roma (Italy) and will be dedicated to consider national comments submitted during the CEN-Enquiry.

Who is responsible/accountable for compliance testing quality?

There is no national or EU law demanding compliance testing to be sound science/evidence based, however:

- Causation and control of work-related illness# does!
- As occupational hygiene ethics
- So, we are responsible/accountable for good quality compliance testing
- prEN 689 can be a helpful an protective vehicle, especially if science/evidence does not help in the decisions

