Improvement of work practices for safe use of formaldehyde in a university-based anatomy teaching and research facility

Paul T.J. Scheepers PhD

Presented by: Martien H.F. Graumans MSc

Radboud Institute for Health Sciences

Health hazards of formaldehyde

- Short-term exposure: Sensory irritation of eyes and mucous membranes of upper airways (~5 % of the population has a hypersensitive response)
- Long-term exposure: sufficient evidence for nasopharyngeal cancer, limited evidence for cancer of the nasal cavity and paranasal sinuses. IARC: "The Working Group was not in full agreement on the evaluation of formaldehyde causing leukemia"

Biomarkers for genotoxic damage

- Netherlands: OEL for 8-h is 150 μg/m³ and for 15-min is 500 μg/m³
- Portugal: Increased frequency of chromosomal aberrations and comets in anatomy pathology workers exposed to (mean ± sd): 475 ± 38 μg/m³
 Costa et al. Mutagenesis 2015, 30, 463–473
- Slovenia: OR of 1.7 (CI 1.1-2.7) for in creased frequency of chromosmal aberrations associated with exposure of workers in a pathology anatomy laboratory to 320 (range: 140-660) μg/m³
 Musak et al. Scand J Work Environ Health 2013;39(6):618-630
- <u>Italy</u>: Increased frequency of leucocyte malondialdehyde-deoxyguanosine
 M[1]-dG adducts in pathologists exposure to formaldehyde > 66 μg/m³
 Bono et al. Chem. Res. Toxicol. 2010, 23, 1342–1348

Aims

- Raise awareness regarding hazard classification of formaldehyde
- Evaluate current exposure according to occupational exposure limits in the Netherlands: 150 $\mu g/m^3$ for 8-h and 500 $\mu g/m^3$ for 15-min
- Implement improved work practices: technical infrastructure and work practices

Gross anatomy facility

Technical information

Room	Room Size (m ²)		Facilities		hange rate (h ⁻¹)	Air Exchange/table (h ⁻¹)		
	(33.7			Design	Effective ^a	Design	Effective ^a	
Storage	164	Storage of cadavers and specimens	Storage of human remains in 75 tanks with lifting equipment and 37% FA stock	6.1	6.3	_ c	_ c	
Embal- ming	89	Tap water flushing	Work bench with water taps	8.8	9.0	_ c	-	
TR-1	199	Instruction	16 dissection tables	15.3	14.2	0.96	0.89	
TR-2	64	Instruction	6 dissection tables	31.3	23.7	5.2	4.0	
TR-3	17	Research projects	2 dissection tables	19.5	4.6 b	9.8	2.3 b	

^a Measurement using CO₂ as a tracer (measurements performed in March 2012); ^b Technical malfunction (returned to 11.4 per hour after repair, leading to a capacity per table of 5.7 per hour); ^c - not measured.

Use of formalin in anatomy department

OSHA 1007 en NIOSH 2016 Silicagel impregnated with 2,4dinitrophenylhydrazine (2,4-DNPH) HPLC-UV (360 nm)

Agilent Eclipse XDB-C18, 150 x 4,6 mm, 5 μ m i.d. BCR reference material: 4.96 +/- 0.06 μ g/filter

Use of formalin in anatomy department

Occupational exposure limit (OEL) time-weighted average for 8-h of 0.15 mg/m³

Workplace	Duration	N	Not compliant	Geometric mean (mg/m³)	% of OEL
Training rooms	2 h	5	2	0.11	73
Storage 8 h		1	1	0.16	107
Embalming	6 h	1	1	1.12	747
All observations	2-8 h	7	4	0.17	115

Preparation (2007)

Use of formalin in anatomy department

Occupational exposure limit (OEL): time-weighted average for 15-min of 0.50 mg/m³

Workplace	Duration	N	Not compliant	Geometric mean (mg/m³)	% of OEL
Training rooms	ning rooms 15 min		0	0.22	44
Storage	15 min	2	2	0.80	160
Embalming	15 min	2	1	0.39	78
All observations	15 min	7	3	0.37	74

Storage (2007)

Occupational hygiene strategy

- **Eliminate**/substitute
- Technical solutions to segregate
- Organize the work
- Adapt the person to the work by protection

1. Eliminate/substitute

Is it possible to <u>eliminate</u> the source or find a <u>substitute</u>?

Can formalin be eliminatedsubstituted? Perhaps

For some applications such as displays of preparations in museums/expositions

Plastination technique developed by dr. Gunther von Hagens at the University of Heidelberg's Institute of Anatomy in 1977

Limitations:

- You still need formalin in the first step of the process
- You need acetone and acrylate monomers to produce the plastic

1. Eliminate/substitute

Is it possible to eliminate the source or find a substitute?

- Augmented reality
- Virtual reality

2. Segregate

Is it possible to segregate the worker from the source?

Storage

Prevent evaporation from spills in storage

Also looks nice, does it work? ... and does this work?

2. Segregate

Is it possible to segregate the worker from the source?

Preparation

Use of local exhaust ventilation (LEV) when flushing body parts with water to reduce formaldehyde emissions during anatomy lessons

It looks nice ... but does it also work nicely?

2. Segregate

Is it possible to segregate the worker from the source?

Down-flow room ventilation at the location where large body parts are mechanically lifted from the storage tanks

This looks sophisticated but ... does it work?

3. Organize

Is it possible to organize the tasks in a better way?

The workers themselves proposed to organize workflow in the storage differently:

- Old practice
 Collect anatomy preparations for required
 anatomy lesson/course from different tanks
- New practice
 All anatomy preparations needed for one anatomy lesson/course will be combined in a single tank. The number of tasks is reduced and thus exposure

4. Protection

Is it possible to <u>protect</u> the worker better?

Full face respirator with double filters for low breathing resistance protection of eyes and airways (APF=50)

Changes in work practices

Category	No.	Description	Old Work Practice	New Work Practice	Location/Room
	T-1	Leak prevention	For	co	Storage
Tachnical	T-2	Elimination of disposable absorbent sheets	Sp	Eli she le ed	Teaching
Technical	T-3	Introduction of local exhaust ventilation (LEV)	wh with ial		Embalming
	T-4	Improvement of down flow ventilation (DFV)	Do spe	n	Storage
Organisation	0-1	Optimizing storage system ^a	Specimens storage methods did not match with teaching programme	Reduce number of tanks to be opened to retrieve the required specimens.	Storage
	0-2	Tap water flushes and reduction of exposure time	Overnight flushing of specimens by tap water	Extension of the flush time and reduction of the time that specimens are put on display.	Embalming

^a Introduction of this new practice is still on-going. Currently this provision is in place for a few courses.

Radboudumc

Changes at fixed locations (8-h samples)

Room	2012			2014			2017		
	n	GM	Range	n	GM	Range	n	GM	Range
TR-1	10	80.4	49–618.3	4	21.2	7.7–38.6	1	9.0°	_ C
TR-2	6	10.9	2.2–672.2 ª	4	69.8	50.3–124.6	1	13.0°	_ C
TR-3	-	-	-	4	16.2	10.1–40.0	1	1.6 ^c	_ c
Embalming	10	74.7	37.3–169.9	4	27.4	16.7–41.7	0	_ c	_ c
Storage	10	290.9	89.7–1506.2	4	301.7	206.5–554.0	2	62.5, 34.9 b,c	_ c

^a At exhaust; ^b Two single measurements: one near field and one far field measurement, respectively; ^c not calculated.

8-h measurements at fixed locations

Figure 8. Mean \pm sd FA concentrations ($\mu g/m^3$) at fixed locations in rooms of the anatomy facility. The shaded area indicates the 8-h TWA OEL of 150 $\mu g/m^3$ for FA in The Netherlands.

Breathing zone 8-h TWA workers and students

Figure 9. Mean \pm sd FA concentrations ($\mu g/m^3$) in the breathing zone of workers and students during a full shift. The shaded area indicates the 8-h TWA OEL of 150 $\mu g/m^3$ for FA in The Netherlands.

Breathing zone concentrations (8-h)

Year	Group	n	GM	P ₉₅	Range	Non- Compliance (%)
	Workers	21	123.0	407.9	17.2-519.7	42.8
2012	Students	5	174.7	930.0	117.0–1120	60.0
	Total	26	131.6	491.7	17.2–1120	46.2
	Workers	8	121.3	252.8	55.6–287.3	37.5
2014	Students	5	102.8	405.6	49.6–468.9	40.0
	Total	13	113.6	359.9	49.6–468.9	38.5
	Workers	6	26.5	61.9	10.6–71.8	0
2017	Students	7	30.9	68.0	19.6–80.1	0
	Total	13	28.8	75.1	10.6-80.1	0

Task-based measurements breathing zone

Figure 10. Mean \pm sd FA concentrations ($\mu g/m^3$) in the breathing zone during specific tasks. The shaded area indicates the 15-min TWA OEL of 500 $\mu g/m^3$ for FA in the Netherlands

Discussion

- Peak exposures are difficult to assess due to lack of reliable direct reading instruments (cross-reactivity with alcohols)
- Skin exposure should be included in an overall exposure assessment because of the sensitizing proporties of formaldehyde
- Formalin is buffered with methanol as stabalizer (degradation product) and has reproductive toxic properties that should be addressed in furture occupational hygene measurements

Conclusion

- The occupational hygiene strategy offers a useful framework to explore improved work practices
- Most interventions are insufficiently evidence-based and need verification in occupational hygiene studies
- Worker's and employer's participation contributes to improvements to be sustainable.

Scheepers et al. (2018) Changes in Work Practices for Safe Use of Formaldehyde in a University-Based Anatomy Teaching and Research Facility. Int. J. Environ. Res. Public Health 2018, 15(9), 2049; https://doi.org/10.3390/ijerph15092049

Acknowledgements

Staff and students of the Department of Anatomy

- Vera Gelsing
- Albert van Linge

Technical staff

Ronald Jansen

Occupational and Environmental Service

Cora Klaver

Lab Technicians

- Rob Anzion
- Gwendolyn Beckmann
- Maurice van Dael

BSc, MSc and PhD Students

- Martien Graumans
- Maarten Melissen
- Nicole Pinckaers
- Luuk van Wel
- Laurie de Werdt

Members of an emergency response team 'fit-for-the-job' Chemical company in the Netherlands in the 1930's (courtesy DSM)